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Synopsis of transforms

In problems where random variables are nonnegative, it is usually more convenient to
use the z-transform or the Laplace transform. The probability generating function
Gy(z) of a nonnegative integer-valued random variable N 1s defined by

Gu(z) = E[2V] (4.84a)
- ;pw(k)z"- (4.84b)

The first expression is the expected value of the function of N, z"¥. The second expres-

sion 1s the z-transform of the pmf (with a sign change in the exponent).

In queueing theory one deals with service times, waiting times, and delays. All of these
are nonnegative continuous random variables. It is therefore customary to work with
the Laplace transform of the pdf,

X*(s) = l fx(x)e™*dx = E[eX]. (4.88)

Note that X*(s) can be interpreted as a Laplace transform of the pdf or as an expected

value of a function of X, e™*¥.




Calculating the moments of the distribution with the aid of G (Z)=Z(l-x;0 DiZ i

Note: Since the Pj represent a probability distribution their sum equals 1
and

6(1) = 6O =) pili =
=0
By derivation one sees l

6D (@)= El2¥] = Elxz¥1]

GM(1) = E[X]

By continuing in the same way one gets

GO =EXX -1 X—-i+1]=F

where Fi 1s the ith factorial moment.



The relation between factorial moments and ordinary moments (with respect to the origin)

The factorial moments Fj = E[X(X —1) -+ (X —1+ 1)] and ordinary moments (with
respect to the origin) Mj = E[X] are related by the linear equations:

Mi = Fq F1. = My
Mo = Fo+Fq F, = Mz —My

M3z = F3+3F2+ F F3 = M3 —3Mx+ 2My

For instance,

Fi= GO = 6W(@)|._ = LE[zX]| = EXz¥|,2q = EX] M1 = E[X]

z=1 dz z=1
Fo= G@1) = E[X(X —1)] = E[X4] —E[X]
= M2 =E[X?] = Fa+ F1 = G@1) + G)(1) = E[X?] — E[X]+ E[X]

= VIX]=M;=Mz=Gax1) + Q1) — (G1(1)% = GA(1) + G(1)(1 — GI(1))



Direct calculation of the moments

The moments can also be derived from the generating function directly, without

recourse to the factorial moments, as follows:

d
—G(2)| =E[XZ*7'],-4 = E[X]
dz _
z=1
d d d d
—z—G(2) = —zE[XZ*1] = —FE[XZ*] = E[X?Z%71],_1= E[X?]
dz dz _ dz _ dz _
z=1 z=1 z=1
Generally,




Generating function of the sum of independent random variables
Let X and Y be independent random variables. Then

Gx+y (2) = E[Z**Y] = E[ZXZ2Y]

= E[ZXE[z2" ] independence
= Gx(Z) GY (Z)

Gx+y (Z) = Gx(Z)GY (Z)

In terms of the original discrete distributions

p; =P{X =i}

q; =P{Y =j}
the distribution of the sum of independent RVs is obtained by convolution p ® Q

P{X+Y =K}=PO k=X 0D Gr-i

Thus, the generating function of a distribution obtained by convolving two independent
distributions is the product of the generating functions of the respective original
distributions.

Q: what 1s the distribution of the difference ot 2 independent RVs ®



Random SUM of iid RVS (Compound distribution) : g

Let Sy be the sum of independent, identically distributed (i.i.d.) random
variables X;, with common mean and variance

Sy =X1+ X2+ - Xy where N is a non-negative integer-valued RV also
independent from all X;,. Whatis E[Sy ], var[Sy ] and distribution of Sy

E[Sy I: forfixedn E[Sy|¥ =n]|=E[x,+ X, +- +X [N = n|
—E|X, + X, +--+ X, |N=n|=E[x;+Xx,++X,] =nE[x,]

E[Sy|N] can be viewed as a function of random N variable
E[Sy|N] isarandom variable

E[Sy ]=E[E[Sy | N ]] the law of iterated expectations
=E[NE [X]]
=E[N]E[X]

Aside: conditional expectation
E[YIX =x] = [ yfyx(¥|x) dy E[YIX = x] = Zyy yPyix (%)

)= FELYX =]

= f_oooo E[YIX = x]fyx(x) dx the law of iterated expectations

(0.0)

- jz f_zny|X<y|x> ay fuGyax = | O;y f_o:ofx,y<x, Vdxdy = | yfO)dy



Random SUM of iid RVS (Compound distribution) : Variance
var [Sy |

» for fixed n, var[Sy|N = n] can be expressed as
var (_'S'N |N = n)
= var (X + X, + - + X y|N =n)
= var (X, + X,y + - + X,|N =n)
—var (X;+ X, +--+ X )
= nvar (X) independence
— var[Sy|N] can be viewed as a function of random variable N

« var|Sy|N]is a random variable
— The variance of Sy can be calculated using the law of total variance

var (Sy )= E[var (Sy [N )]+ var (E[Sn|¥])
- E [N var (X)) ]+ var (NE[X])
— var (X) E[N |+(E[x])* var (V)



Random SUM of iid RVS (Compound distribution) :

Denote:

Gy(z) the common generating function of the X;

Gy(z) the generating function of N

For fixed n:
E[zSzle =n| = [Gx(2)]" n=1,23,....
Proof:

E[z°v|N = n] = E[zX1tX2t"+4N|N = n]
= E[z%12z%2 .., zXN|N = n]
= E[z%1z%2 _, z%n]
E[zX1]E[z%2] ... E[z%"] independence




We wish to calculate GSN (z)

The transformation Gg (z) is found by starting with Gy (z)= E[zN]
transform and replacing each occurrence of z with Gy (z) i.e.

— N
GN(Z)‘GX@) =l ]|GX(Z)
Prove that GSN(Z) = Gy (GX(Z))
Proof:
Gs (z) = Elz%]
= E[E[z°~|N]] Law of iterated expectation
= E[Gx(2)"] Using E[z°v|N = n] = [Gx(2)]"
= Gy (GX(Z))
Analogy

Gy(z) = E[zV] © GN(Gx(2))=E[Gx(2)"]



;' N_L o /.:.J A
..) s: - x = P X . ) /

\

E[$s3- ELNVIELRXD
(8
ErsiI= £ (pIvert)T ECVI(EDD)

" L
VorlH = ELAIVerliy « Varid) (EL#])

reminder:

\f T - &
fev( Alt=3). & [(x—E(xy=31) | Y3]

Vow (J)= £ (var (2Y) ) «vae( E (XV)))

4

D 5...;-;),‘/....7.'#
v > e -
< v.rlom'udt

T—l

o 'd-r’&.a'u/

LSS

: ‘//:’/Zlv.o

- /-

‘/) U/‘



’ - , “q . ﬁ"‘/(f/
J J)/qfw SR ket S w5 %z
) J ) R 25
TR L e S
Ny, -
S = ’ X" ; -~
/=) )
A e (s)

gCst)

r o) —eels
Lo’

n r r v~ . ‘_g/J/\/ // /_,/ U)/-‘xé.}()/"-

; )('\M“-} : P(n/:n) n € support N

-

L’ / n
BT 2 o Ll
' ’ e

N -
E(sH =€ [ o1 X"-B—’ hz l‘;[

.
g-=3

[0

= ie[zx'].f(n/:n]: /‘<"-l

n

W

S w E(X)-pIN=nY  E[INDEEQ) %" wapiid

12

C(X)S npven)

i

\

E(r)E(M



%

A Loty app 2 02 2 8 9 €Y ;f‘{/’/’/&/‘:}/u//;/(.f
L ' ;
&
z’ x % )’V s U"”'" //// S'K ¢r‘/w/
(""'J‘"( o qu:' / <
1
E(s™: 5— E( Smvan) pvan)
) - 4 st /
-’ZE[(L)()J (”"" .uwp/_/\(u’r—{()
Ve TIPS [ Fml el 10 SR RSO
“17C (3 won) CL/ ‘
e
Vtr(sly:n)s ’lVAr(,() ,:’

l
avaor(f): var(SInn) = € [ > /"’“J'(E[s“:"))

e € [Sll/u‘n)« ("E(—"‘))’L )

1 0. .8
G[‘ \N:“’)i '\Vau('/)'nl(éck)]?' . /,;I\./',’



: >
C:(S.‘): ZE{S“""J‘P(/V-—'“) 5

3

2
- (n»’&vLﬁ)*ﬂzECX)))P{N\'h)

5
s ELwy VearW)+E( J(E CFY)

- » = ,)
SAnIg = o Val‘S) /

.
verts) . ECs'3. (ECST

v
e TVI(E ) N il

= E[NJV‘\/LJ‘] - .

T %

s BeAIVECER) =l £c~ty- ool J(E013)
T

&
ECw~) VarlA)» Ya<w )(E [X])



The distribution of max and min of independent RVs
Let X;, X, , ..., X, beindependent random variables

(distribution functions Fj(x) and tail distributions Gj(x),i=1, ..., n)

Distribution of the maximum

Pimax( X, X5, ..., X, )<x}=P{X; <x, ..., X, <x}
=P{X; < x}---P{X, < x} (independence!)

=Fq(x) -+ -Fn(x)

= (F(x))™ iid

Distribution of the minimum

P{min(X{, X, , ..., X )>x}=P{X;>x, ..., X, >x}

= P{X;>x}- - -P{ X, > x} (independence!)

= G1(x) - - -Gn(x)

=(Gx)"  iid



The distribution of max and min of independent RVs

Theorem 5.7

Let X be a vector af n iid random variables each with CDF Fx(x) and PDF fyrix).
(a) The CDF and the PDF of ¥ = max|X,..., X, ) are

Fr(y)=(Fx(y)", fr () =n(Fy 0" fr(v).

(b) The CDF and the PDF of W = mmn{X;, ..., X, )} are

Fr(w)=1—-1(1— Fy(w))", fw(w) =n(l — FA'{u'}}"_lﬂi'{ur} .

Proof By definition, fy(y) = P[¥ =< y]. Because [ is the maximum value of [X7, ..., X,}.
the event {F =y} = {1 <y, X<y, ..., Xy = y}. Because all the random vanables X; are

ud, {¥ =< y} is the mtersection of n independent events. Each of the events {X; < y| has probability
Fxi(y). The probability of the intersection 1s the product of the indn-idual probabilities, which implies
the first part of the theorem: Fy(y) = (Fy(y))". The second part 15 the result of differentiating Fy ()
with respect to y. The derrvations of Fg-(w) and fp(w) are similar They begin with the observations
that F(w) = 1—P[WF > w]andthattheevent{F = w}={X] > w. X7 > w, ... X, > w}, which
15 the intersection of n independent events, each with probability 1 — Fy(w).



ORDER STATISTICS
Let X;, X, , ..., X, be mutually iid continuous RVs, each having the distribution
function F and density f.

letY,, Y, ,..., Y, beapermutation of theset X, X, ,..., X, soastobein
increasing order.

To be specific:

Y,=min{X;, X, ,..., X, }

and

Y. =max{X;, X, ,..., X }

Y. is called the k'-order statistic.

Since X, X, , ..., X, are continuous RVs, it follows that

Y,<Y,< ...<Y (asopposedto Y, <Y, <...<Y, ) with a probability
of one.



ORDER STATISTICS

As examples of use of order statistics,
let X, be the lifetime of the ith component in a system of n
independent components.

e.g.

series system,

Y, is overall system lifetime of a series system.

Parallel systems

Y. is the lifetime of a parallel system

and

Y. 1 1S the lifetime of an k-out of-n system (the so-called N-tuple
Modular Redundant or NMR system).



ORDER STATISTICS

Deriving the distribution function of Y,
the probability that exactly
jof the X.'s lie in(-c0, y] and (n - j) lie in (y, oo )is:

ny . .
(j) F/(y)[l - F(y)]"*™/  since the binomial distribution with parameters

n and p = F(y) is applicable.

Then:
FYk(y) =p (Y < y)=P("at least k of the X 's lie in the interval (-0, y] “)

ny . :
- ?:k (]) FJ(y)[l - F(y)]*/ -co<y<oo  (3.52)



8

ORDER STATISTICS

In particular, the distribution functions of Y, and Y, (i.e. max and min ) can be obtained from
(3.52) as:

Py, ) = () )0 - FI™ ) =[F)I" sy o0

Fy, () - Z Fi(y)1 - F(y))

= (5) P - Fnir=i= (5) Pml - FnI 0= 1—-[1-F)I"  -oosy oo

j=0

Thus we obtain:
Reeries(t) = Ry, (t)=1- Fy, (t) = 1-(1- [1-F(t)]") = [1-F(t)]" = [R (8)]" ,
RparaIIeI(t) = RYn (t): 1- FYn(t) 1- [F(t)]n 1- [1 R (t)]n

We may generalize above to the case when the lifetime distributions of
individual components are distinct:

Rseries(t) = ?=1 R; (t) ) RparaIIeI(t) =1_H7i1=1(1 — R; (t))



Perf Eval of Comp Systems

/. Important distributions

We will deal with:

* discrete distributions:
- Bernoulli;
- binomial;

- geometric;
- Negative Binomial;

- Poisson.

51



Perf Eval of Comp Systems

7.1. The Bernoulli(p) X "~ Bernoulli(p)
Assume we have one experiment:

event A occurs with probability p; Pr[{A}]=p 0<p<1

event A does not occur with probability (1 -

O={A,A}

p); Pri{A}]=1-p=q

0<p<l

IfX is a r.v. drawn from the Bernoulli(p) distribution, write: X ~ Bernoulli(p)

and we define RV X as:

021..-

X ={1 w/ prob p
0 otherwise l
The p.m.f. of r.v. X is defined as : 0.8
Py (1)=p 0.6
Py (0)=1-p 0.4
Example: Bernoulli(p), p=0.75 0

Lecture: Reminder of probability

22



Mean and Variance of a
Bernoulli Random Variable

The mean is:

u, =E(X) = ZXP(X) (0)1-P)+ ()P =P

And the variance is:

62 =E[(X = 11)°1= 3 (x— 11 )P(%)

= (0—P)?(1-P)+(1-P)’P = P(1-P)




Bernoulli distribution X ~ Bernoulli(p)

Example 1. X describes the bit stream from a traffic
source, which is either on or off. The generating function

G(z)= po’+ p1zt = q+pz
EX]= GY(1)=p
ViX]= GA(1) + GM(1)(1 - G1(1)) = p(1-p) = pg

Example 2. The cell stream arriving

at aninput port of an ATM switch: — —

in a time slot (cell slot) thereis a

cell with probability p or the slot is
empty with probability g.



7.2. Binomial(n,p) distribution X ~ Bin(n, p)

Definition: If X ~Binomial(n, p), then X represents the number of successes

in n Bernoulli(p) experiments (i.e.
X = Y, Y; where Y;~Bernoulli(p) and the Yjare independent (i = 1,..,n)

The p.m.f. of r.v. X is defined as follows
PriX =i} =Clp'(1—p)™" i=01,..n0<p=s1 Ci=(})

LR Lo oo e e e e e e, .
[:I_|::| ............................................................ .
_ o - S 1 N S SS TR .
Note: prove that Binomial 1s a probability distribution 0 H
- . T : _ : 0 |_| [ =
S p, :Z( _)!,*{1_;3}f*—t 0 | : 3 4
=0 i ° e.g. Probability mass function of
| the Binomial(n, p) distribution,
=[p+(1-p)]" withn =4 and p = 0.3.
= 1.

Lecture: Reminder of probability 54
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Binomial distributionX ~ Bin(n, p)

The generating function 1s obtained directly from the generating function + Pz of a
Bernoulli variable G(z) = (q + pz)" or directly from the definition

Gz) = X2opizt = Y= (Dt (1 —p)vizt= ¥, () (p2)' (1 — p)™~'= (g + p2)™

By identifying the coefficient of Z'in the expansion of we have
pi=PX=i}=Dp'A-p)""

n
A limiting form when A = E[X] = np is fixed and n — 00 : using € = lim (1 + %)

6@ = (1~ -2p)=(1- 1 - D) 5 e

which is the generating function of a Poisson random variable.



Theorem 6.2 The varianceaf Wy = X1+ --- + Xy is

] =1 =n
Var[W,] = ) Var[X;]+2) ) Cov[X; X;].
i=l1 i=1 j=i+l

Proof From the definition of the variance, we can write Var[F,] = E[(W, — E[F, 1)*]. For
convenience, let y; denote E[X;]. Since W, = 3 7_; X, and E[W,] = 3 7_; ;. We can write

9

m m m
il =E | | D (Xi—pu) | |=E| D (X —u) ) (X5 —py) (6.2)
=1 i=l Jj=1

=33 cor[x. 3], (63)

i=1 j=l1

In terms of the random vector X = [..1'1 e .Ji’.'u]", we see that Var[#,] 1s the sum of all the
elements of the covanance matrix Cy. Recognizing that Cov[X;, X;] = Var[.X'] and Cov[X;. X ;] =
Covl.X;, X;], we place the diagonal terms of Cx in one sum and the off-diagonal terms (which occur
in pairs) in another sum to arrmve at the formula in the theorem.

When X7, ..., X, are uncorrelated, Cov[X;, X;] = 0fori # j and the vanance of the
sum 15 the sum of the vanances:

Theorem 6.3 When X1, ..., X, are uncorrelated,

Var[ W, | = Var[X1] + - - - 4+ Var[X;].



Example 6.1 Xp. X7, Xy, ... Is a sequence of random variables with expected values E[X;] = 0

and covariances, Cov[.X;.X;] = 0.8"=71_ Find the expected value and variance of
a random variable ¥; defined as the sum of three consecutive values of the random
sequence

I";- :Ir' +-‘Yr'—1 + .1"_]- l:ﬁ-'-‘-}

Theorem 6.1 implies that

E[Y;]=E[X;|+E[Xim1]+ E[Xi_2] =0. (6.5)

Applying Theorem 6.2, we obtain for each 7,

Var[ ;] = Var[X;] + Var[X;_;] + Var[X;_1]
+2Cov [X;, X;_;1]+2Cov[X;, X;_2] +2Cov [X;_;. X;_3]. (6.6)

We next note that Var|.X;] = Cov[X;, X;] = 0.8~ =1 and that
Cov[X;. X;_1] = Cov[X;_1.X;_;] =0.8",  Cov[X;.X;;]=08. (67

Therefore
Var[F;1=3x 08" +4x08l +2x 08 =748 (6.8)



Example 6.2

At a party of n = 2 people, each person throws a hat in a common box. The box is
shaken and each person blindly draws a hat from the box without replacement. We
say a match occurs if a person draws his own hat. What are the expected value and
variance of ¥, the number of matches?

Let X; denote an indicator random variable such that

1 person i draws his hat,
0 otherwise.

X = i (6.9)
The number of matches is ¥, = X} + --- + X},. Note that the X; are generally not
independent. For example, with n = 2 people, if the first person draws his own hat,
then the second person must also draw her own hat. Mote that the ith person is
equally likely to draw any of the n hats, thus Py; (1) = 1/n and E[X;] = Py; (1) = 1/n.
Since the expected value of the sum always equals the sum of the expected values,

E[Va]=E[X1]+ -+ E[Xn]l=n(l/n) =1 (6.10)

To find the variance of ¥,,, we will use Theorem 6.2. The variance of X; is

1 1
VarlXi] = E [ ] - (£ [x:])" = = - =. (6.11)
To find Cov[.X;. X;], we observe that
Cov|[X;, X;| = E[X:X;] - E[X:] E [X;]. (6.12)

Note that X; X; = 1 if and only if X; =1 and X; = 1, and that X; X; = 0 otherwise.
Thus

E[X;X;] = Py, x; (1.1) = Px;x; (111) Px; (D). (6.13)

Given X; = 1, that is, the jth person drew his own hat, then X'; = 1 if and only if the

ith person draws his own hat from the n — 1 other hats. Hence PI.-LIL}- (111y=1fin—1)

and
1

nin —1)°

Cov [X;. X;]| = : i1 (6.14)

E [I"Ij] = T nin—1) nl




Example 6.3

Finally, we can use Theorem 6.2 to calculate
Var[Fyp] = n Var[ X;] +n(n — 1) Cov [ X7, X5] = 1. (6.15)
That is, both the expected value and variance of ¥, are 1, no matter how large n is!

Continuing Example 6.2, suppose each person immediately returns to the box the hat
that he or she drew. What is the expected value and variance of ¥, the number of
matches?

In this case the indicator random variables X°; are iid because each person draws from
the same bin containing all » hats. The number of matches ¥, = A7 +..-+ X}, is the
sum of » iid random variables. As before, the expected value of ¥, is

E[Vy]l=nE[X:|=1. (6.16)
In this case, the variance of ¥, equals the sum of the variances,

Var[Vy] = n VarlX;] = n (l - l) —1-L (6.17)

M iil1 n



deterministic sum: distribution

Example 6.6

J and K are independent random variables with probability mass functions

06 j=2, 0.5 k=-1,

Prij)= 02 j=3 Priky=1{ 05 k=1,

0  otherwise, 0  otherwise.

Find the MGF of M = J + kK? What are E[M] and Pas(m)?

J and K have have moment generating functions
$7(5) = 0.26° + 0.6 + 0.2, ox (s) = 0.5 +0.5¢".
Therefore, by Theorem 6.8, M = J + K has MGF
Prr(s) = drs)pr(s) = 0.1 4036 +026™ + 0.3 4 0.16%.

To find the third moment of M, we differentiate ¢ yr(s) three times:

£[3] = d>bu(s)
ds3 0

= 0.3 +02(2eF 1+ 03030 £ 014%™ , =164

The value of Pys(m) at any value of m is the coefficient of e™ in ¢ye(s):

4

{p‘;f{s}:E[e-'H]: 0.1 + 03 &+ 02 ¥+ 03 ¥+ 01 &%
— — e — T

Puily  Pu(l) Puyi2) Puy(3) Pui4)

The complete expression for the PMF of M is

0.1 m=04,
03 m=1.3,
Puym =1 92 m=2

0 otherwise.

(6.40)

(6.43)

(6.44)

(6.45)

(6.46)



deterministic sum: distribution

Theorem 6.10

Theorem 6.11

The sum of n independent Gaussian random variables W = X1 + - -- + X}, is a Gaussian
random variable.

Proof For convenience, let u; = E[X;] and '5;-'2 = Var[.X;]. Since the .X; are independent, we know

that
Pw(s) = dx, (s)dx,y(s) - @y, (5) (6.49)
_ :m+af:1.-"lernl+n§:1ﬂ,.,g*'-“"""”n] =2 [2 (6.50)
_ Sl dpn o 4o )22 (6.51)

From Equation (6.51),. we observe that ¢ (5) 15 the moment generating function of a Gaussian random
variable with expected value py + - - - + py and vanance r.rf + e {rﬁ.

In general, the sum of independent random variables i one famuly 15 a different kind of
random variable. The following theorem shows that the Erlang (1, 1) random vanable 1s
the sum of n independent exponential () random vanables.

If X1, ..., X, areiid exponential ().) random variables, then W = X1 + - - - + X, has the
Erlang PDF

J-.;I] llnﬂ_lﬁ—i.u' :
frw)={] @Dnr W= 0,

0 otherwise.
Proof In Table 6.1 we observe that each X; has MGF ¢y(5) = 4 /(i — 5). By Theorem 6.8, W has
MGF )

s
- ' 6.52
Pwis) (I-. — ) 52

Retuming to Table 6.1, we see that W has the MGF of an Erlang (n, A) random variable.



random sum: distribution

Example 6.7 At a bus terminal, count the number of people arriving on buses during one minute. If

the number of people on the ith bus is X ; and the number of arriving buses is N, then
the number of people arriving during the minute is

R=K + - +Ky. (6.56)

In general, the number N of buses that arrive is a random variable. Therefore, R is a
random sum of random variables.

In the preceding example we can use the methods of Chapter 4 to find the jomnt PMF
Py r(n,r). However, we are not able to find a simple closed form expression for the PMF

Pz(r). On the other hand, we see m the next theorem that 1t 15 possible to express the
probability model of R as a formmla for the moment generating function ¢ z(5).



random sum: distribution

Theorem 6.12

¢N(s) = E [ESN

Let | X, X2, ...} be a collection of iid random variables, each with MGF ¢ x(5), and let N
be a nonnegative integer-valued random variable that is independent of | X 1, X5, ...}. The

random sum R = X1 + - - - + Xy has moment generating function

Pr(5) = ¢xn(lngyx(s)).

Proof Tofindgpis) = E|&’ R] we first find the conditional expected value E[E“Rl}'-' = n]. Because
this expected value 15 a function of n, 1t 15 a random vanable. Theorem 4.26 states that ¢g (5) 15 the
expected value, with respect to V, nfE[e‘RL"l.-’ = n]:

dp(s) = ZE[ IV =n|Pym) = Z e+ =] Py ). (659)
n=( =0

Because the X; are independent of N,

E [&M++XN)x = n] —E [e-'lfl+-“+i'n?] _E [gz i*’] = dw(5). (6.59)
In Equation (6.58), F = X1 + --- + X,,. From Theorem 6.8, we know that ¢wi(s) = [¢x(s)]".
implying
o
Pris) = E[qh ()" Py im). (6.60)
n=0

We observe that we can write [¢y(5)]" = [.a?l':"i""ﬂ1r = = lmex(a)ln  Thie implies
SH e
= Z e PN(”) (62?) Pris) = ZEI:I"II#II:HHP?EF (n). {ﬁﬁl}
NesSy n=0

Recognizing that this sum has the same form as the sum in Equation (6.27), we infer that the sum is
¢ (z) evaluated at s = lnghyis). Therefore, ¢piz) = dy(lngdyis)).



In the following example, we find the MGF of a random sum and then transform it to the
PMF.

Example 6.9 The number of pages N in a fax transmission has a geometric PMF with expected
value 1/¢q = 4. The number of bits K in a fax page also has a geometric distribution
with expected value 1/p = 10° bits, independent of the number of bits in any other

page and independent of the number of pages. Find the MGF and the PMF of B, the
total number of bits in a fax transmission.

When the ith page has K; bits, the total number of bits is the random sum B =
Ki+---+Ky. Thus ¢p(s) = ¢y (Inpg (s)). From Table 6.1,

ES 5

_ q B pe
dN(s) = I~ —g)& P (s) = T~ 0= pe (6.62)

To calculate ¢ 5 (s), we substitute In ¢ x (s) for every occurrence of s in ¢y (s). Equiva-
lently, we can substitute ¢ x (s) for every occurrence of e° in ¢x(s). vields

1 (1—{{}551”]'35) pqe’
¢p(s) = = -. (6.63)
5 L — (1 — pg)e’
1—(1—q) (1—({’;]@) (1 - pq)

By comparing ¢x (s) and ¢p(s), we see that B has the MGF of a geometric (pg =

2.5 x 10_5) random variable with expected value 1/(pg) = 400,000 bits. Therefore, B
has the geometric PMF

b—1 _
PB(b):l pq(l — pq) b=1,2,..., (6.64)

0 otherwise,



Using Theorem 6.12, we can take derivatives of ¢ y(In ¢ x(s)) to find simple expressions
for the expected value and variance of R.

Theorem 6.13  For the random sum of iid random variables R = X | + - -- + XN,
E[R]= E[N]E[X], Var[R] = E [N] Var[X] + Var[N] (E [X])?.

Proof By the chain rule for derivatives,

¢’ (s)
Px(s)

Since ¢ x(0) = 1, ¢,(0) = E[N], and ¢',(0) = E[X], evaluating the equation at s = 0 yields

(6.65)

PR(s) = py(Indx(s))

, , 9% (0)

E|R| = 0) = ) —— =E|N|E ) 6.66
[R] = ¢pp(0) = Py ( )t;a‘)X(O) [N] E [X] (6.66)

For the second derivative of ¢y (s), we have

)\’ Dx ()0 (s) — [ ()]
" (s) = ¢ (In L) o) Lty el 6.67
Pr(s) = dn(ngx(s)) (qﬁx(s)) dn(ngx(s)) e (6.67)
The value of this derivative at s = 0 is

E [RZ] —E [NE] u3 + E[N] (E [XZ] _ ,u,:‘;(-) . (6.68)

Subtracting (£ [R])2 = (Unm X)2 from both sides of this equation completes the proof.



We observe that Var| R]| contains two terms: the first term, w y Var[X], results from the
randomness of X, while the second term, Var[ N ],ui,, is a consequence of the randomness
of N. To see this, consider these two cases.

e Suppose N 1is deterministic such that N = » every time. In this case, uy = n and
Var[ N] = 0. The random sum R is an ordinary deterministicsum R = X |+ - -+ X,
and Var[R] = n Var[.X].

e Suppose N is random, but each X; is a deterministic constant x. In this instance,
ux = x and Var[X] = 0. Moreover, the random sum becomes R = Nx and
Var[R] = x2 Var[NV].

We emphasize that Theorems 6.12 and 6.13 require that N be independent of the random
variables X, X, .... That is, the number of terms in the random sum cannot depend on
the actual values of the terms in the sum.
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