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Synopsis of transforms



Calculating the moments  of  the distribution  with the aid  of   G(z)=σ𝑖=0
∞ 𝑝𝑖𝑧

𝑖

Note: Since the pi represent a probability distribution their sum equals 1 

and 

𝐺 1 = 𝐺(0) 1 =෍

𝑖=0

∞

𝑝𝑖1
𝑖 = 1

.

By derivation one sees

𝐺(1) 𝑧 =
𝑑

𝑑𝑧
𝐸 𝑧𝑋 = 𝐸 𝑋𝑧𝑋−1

𝐺(1) 1 = 𝐸 𝑋

By continuing in the same way one gets

𝐺(𝑖) 1 = 𝐸 𝑋 𝑋 − 1 · · · 𝑋 − 𝑖 + 1 = 𝐹𝑖

where 𝐹𝑖 is the ith factorial moment.
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The relation between  factorial moments and ordinary moments (with respect  to the  origin)

F1 = M1

F2

F3

=

=

M2 −M1

M3 − 3M2+ 2M1

.

The factorial moments F i = E[X (X − 1) ··· (X − i + 1)] and ordinary moments (with

respect  to the origin) M i  = E[X i] are related by the linear equations:

M1 = F1

M2 = F2 + F1

M3 = F3 + 3F2 + F1

For instance,

F1 = G(1)(1) = ห𝐺(1) 𝑧
𝑧=1

= ቚ
𝑑

𝑑𝑧
𝐸 𝑧𝑋

𝑧=1
= ȁ𝐸 𝑋𝑧𝑋−1 𝑧=1 = E[X] M1 = E[X]

F2 = G(2)(1) = E[X(X − 1)] = E[X2] − E[X]

⇒ M2 = E[X2] = F2 + F1 = G(2)(1) + G(1)(1) = E[X2] − E[X]+ E[X]

2 1
2 (2) (1) (1) 2 (2) (1) (1)⇒ V[X ] = M − M = G (1) + G (1) − (G (1)) = G (1) + G (1)(1 − G (1))
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Direct calculation of the moments

The moments can also be derived from the generating function directly, without 

recourse to  the factorial moments, as follows:

ቤ
𝑑

𝑑𝑧
𝐺 𝑧

𝑧=1

= 𝐸 𝑋𝑍𝑋−1 𝑧=1 = 𝐸[𝑋]

ቤ
𝑑

𝑑𝑧
𝑧
𝑑

𝑑𝑧
𝐺 𝑧

𝑧=1

= ቤ
𝑑

𝑑𝑧
𝑧𝐸 𝑋𝑍𝑋−1

𝑧=1

= ቤ
𝑑

𝑑𝑧
𝐸 𝑋𝑍𝑋

𝑧=1

= 𝐸 𝑋2𝑍𝑋−1 𝑧=1= 𝐸 𝑋2

Generally,

ቮ
𝑑

𝑑𝑧
𝑧
𝑑

𝑑𝑧

𝑖−1

𝐺 𝑧

𝑧=1

= 𝐸 𝑋𝑖
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Generating function  of  the sum  of  independent  random variables

Let X and Y   be independent random variables. Then

GX+Y (z)  =  E[zX+Y ]  = E[zXzY ]

= E[zX]E[zY ] independence

=  GX(z)GY(z)

GX+Y (z) = GX(z)GY (z)

In terms of  the original discrete distributions

𝑝𝑖  =P{X = i}

𝑞𝑗  =P{Y  = j}

the distribution of  the sum of  independent RVs is obtained by convolution p ⨀ q

P{X + Y = k} = (p ⨀ q)k = σ𝑖=0
𝑘 𝑝𝑖 𝑞𝑘−𝑖

Thus, the generating function of  a distribution obtained by convolving two independent

distributions  is the product of  the generating functions of  the respective original  

distributions.

Q: what is the distribution of  the difference of  2 independent RVs ?6



8Random SUM of iid RVS (Compound  distribution) :

Let 𝑆𝑁 be the sum of independent, identically distributed (i.i.d.) random 
variables X i, with common mean and variance

𝑆𝑁 = X1 + X2 + ···XN    where N is a non-negative integer-valued RV also 
independent from all X i ,.  What is E[𝑆𝑁 ] , var[𝑆𝑁 ] and distribution of 𝑆𝑁

E[𝑆𝑁 ]:            for fixed n

E[𝑆𝑁 ] = E[E [𝑆𝑁 |N ]] the law of iterated expectations

=E[NE [X]]
=E[N]E[X] 

E 𝑆𝑁 𝑁 can be viewed as a function of random N variable
E 𝑆𝑁 𝑁 is a random variable  

Aside: conditional expectation

E Y X = 𝑥 = ∞−׬
∞

𝑦𝑓Yȁ𝑋(𝑦ȁ𝑥) 𝑑y                     𝐸 Y X = 𝑥 = σ∀𝑦 𝑦𝑝Yȁ𝑋 yȁ𝑥

E 𝑌 =
E E Y X = 𝑥
𝑥 𝑦

= ∞−׬
∞

E Y X = 𝑥 𝑓𝑋 𝑥 𝑑𝑥 the law of iterated expectations

= න
−∞

∞

න
−∞

∞

𝑦𝑓Yȁ𝑋(𝑦ȁ𝑥) 𝑑y 𝑓𝑋 𝑥 𝑑𝑥 = න
−∞

∞

𝑦න
−∞

∞

𝑓X,Y 𝑥, 𝑦 𝑑𝑥𝑑𝑦 = න
−∞

∞

𝑦𝑓Y 𝑦 𝑑𝑦



Random SUM of iid RVS (Compound  distribution) : Variance 

• for fixed n, var 𝑆𝑁 𝑁 = 𝑛 can be expressed as

– var 𝑆𝑁 𝑁 can be viewed as a function of random variable N

• var 𝑆𝑁 𝑁 is a random variable  

– The variance of 𝑆𝑁 can be calculated using the law of total variance 

independence

var [𝑆𝑁 ]
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Random SUM of iid RVS (Compound  distribution) : 

Denote: 

GX(z) the common generating function of the  X i

GN(z)     the generating function of N

For fixed n:

E 𝑧𝑆𝑁 N = 𝑛 = [𝐺𝑋(𝑧)]
𝑛 n = 1, 2, 3, . . . .

Proof:

E 𝑧𝑆𝑁 N = 𝑛 = E[𝑧𝑋1+𝑋2+⋯+𝑋𝑁ȁN = n]
= E[𝑧𝑋1𝑧𝑋2 … 𝑧𝑋𝑁 ȁN = n]
= E 𝑧𝑋1𝑧𝑋2 … 𝑧𝑋𝑛

= E 𝑧𝑋1 𝐸[𝑧𝑋2] … 𝐸[𝑧𝑋𝑛]
= [𝐺𝑋(𝑧)]

𝑛
independence
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.

𝐺𝑆
𝑁
z = E 𝑧𝑆𝑁

= E[E[𝑧𝑆𝑁ȁN]]
= E[𝐺𝑋 𝑧 𝑁]

= 𝐺𝑁 𝐺𝑋 𝑧

Analogy
↔ GN(GX(z))=E[GX(z)N ]

Law of iterated expectation

Using  E 𝑧𝑆𝑁 N = 𝑛 = [𝐺𝑋(𝑧)]
𝑛

We wish to calculate 𝐺𝑆
𝑁
z

ቚ𝐺𝑁 z
𝐺𝑋(𝑍)

= ቚ𝐸[𝑍𝑁]
𝐺𝑋(𝑍)

𝐺𝑁 z = 𝐸[𝑧𝑁]

The transformation 𝐺𝑆
𝑁
z is found by starting with 𝐺𝑁 z = 𝐸[𝑧𝑁]

transform and replacing each occurrence of 𝑧 with 𝐺𝑋 z i.e.

Proof:
Prove that  𝐺𝑆

𝑁
z = 𝐺𝑁 𝐺𝑋 𝑧
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𝑛 ∈ 𝑠𝑢𝑝𝑝𝑜𝑟𝑡 N
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The distribution of max and min of independent RVs

Let X1 , X2 , . . . , Xn be independent random variables
(distribution functions Fi(x) and tail distributions Gi(x), i = 1, . . . , n)

Distribution of the maximum
P{max(  X1 , X2 , . . . , Xn ) ≤ x} = P{X1 ≤ x, . . . , Xn ≤ x}
= P{X1 ≤ x} · · ·P{Xn ≤ x} (independence!)
= F1(x) · · ·Fn(x)

= (F(x))𝑛 iid
Distribution of the minimum
P{min(X1 , X2 , . . . , Xn ) > x} = P{X1 > x, . . . , Xn > x}
= P{X1 > x} · · ·P{ Xn > x} (independence!)
= G1(x) · · ·Gn(x)

= (G(x))𝑛 iid
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The distribution of max and min of independent RVs
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ORDER STATISTICS
Let X1 , X2 , . . . , Xn be mutually iid continuous RVs, each having the distribution 
function F and density f.
Let Y1 , Y2 , . . . , Yn be a permutation of the set X1 , X2 , . . . , Xn so as to be in 
increasing order. 

To be specific:
Y1 =min {X1 , X2 , . . . , Xn }
and
Yn =max {X1 , X2 , . . . , Xn }.
Yk is called the kth-order statistic. 
Since X1 , X2 , . . . , Xn are continuous RVs, it follows that
Y1 < Y2 <, . . . <Yn (as opposed to Y1 ≤ Y2 ≤ . . . ≤ Yn ) with a probability
of one.
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ORDER STATISTICS 
As examples of use of order statistics, 
let Xi ; be the lifetime of the ith component in a system of n 
independent components. 
e.g.

series system, 

Y1 is overall system lifetime of a series system. 

Parallel systems

Yn is the lifetime of a parallel system 

and

Yn-k+1 is the lifetime of an k-out of-n system (the so-called N-tuple 

Modular Redundant or NMR system).
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ORDER STATISTICS 
Deriving the distribution function of Yk

the probability that exactly

j of the Xi 's lie in(-∞, y] and (n - j) lie in (y, ∞ )is:
𝑛
𝑗 F𝑗(y)[l − F(y)]𝑛−𝑗 since the binomial distribution with parameters 

n and p = F(y) is applicable.

Then:

FYk
(y) = p (Yk ≤ y) = P ("at least k of the Xi 's lie in the interval (-∞, y] “)

= σ
𝑗=k
𝑛 𝑛

𝑗 F𝑗(y)[l − F(y)]𝑛−𝑗 -∞≤ y ≤ ∞ (3.52)
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ORDER STATISTICS 
In particular, the distribution functions of Yn and Y1 ( i.e. max and min ) can be obtained from 

(3.52) as:

FY𝑛(y) =σ𝑗=𝑛
𝑛 𝑛

𝑗 F𝑗(y)[l − F(y)]𝑛−𝑗 =[F(y)]𝑛 −∞≤ y ≤ ∞ ,

FY1(y) =෍

𝑗=1

𝑛
𝑛
𝑗 F𝑗(y)[l − F(y)]𝑛−𝑗

=෍

𝑗=0

𝑛
𝑛
𝑗 F𝑗(y)[l − F(y)]𝑛−𝑗−

𝑛
0

F0(y)[l − F(y)]𝑛−0=1−[1−F(y)]𝑛 −∞≤ y ≤ ∞

Thus we obtain:
Rseries(t) = R𝑌1 (t)= 1- F𝑌1(t) = 1-(1- [1−F(t)]𝑛) = [1−F(t)]𝑛 = [R (t)]𝑛 ,

Rparallel(t) = R𝑌𝑛 (t)= 1- F𝑌𝑛(t) = 1−[F(t)]𝑛 = 1-[1− R (t)]𝑛

We may generalize above to the case when the lifetime distributions of 
individual components are distinct:

Rseries(t) = ς𝑖=1
𝑛 R𝑖 (t) , Rparallel(t) =1-ς𝑖=1

𝑛 (1 − R𝑖 (t))



Perf Eval of Comp Systems

7. Important distributions
We will deal with:

• discrete distributions:

- Bernoulli;

- geometric;

- binomial;

- Poisson.

51

- Negative Binomial;



7.1. The Bernoulli(p)
Assume we have one experiment:

event A occurs with probability p; Pr[{A}]=p 0≤p≤1
event A does not occur with probability (1 - p); Pr[{ഥA}]=1-p=q 0≤p≤1
Ω={A,ഥA}
IfX is a r.v. drawn from the Bernoulli(p) distribution, write: X ∼ Bernoulli(p) 
and we define RV X as:

X =ቊ
1 w/ prob p
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

The p.m.f. of r.v. X is defined as :
𝑃𝑋 (1) = p
𝑃𝑋 (0) = 1 − p

Lecture: Reminder of probability 22

Perf Eval of Comp Systems

Example: Bernoulli(p),   p=0.75

X  ∼ Bernoulli(p)



Mean and Variance of a 
Bernoulli Random Variable

The mean is:

And the variance is:

PPPxPxXE
X

X =+−===  )1()1)(0()()(

)1()1()1()0(

)()(])[(

22

222

PPPPPP

xPxXE
X

XXX

−=−+−−=

−=−=  
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Bernoulli distribution X  ∼ Bernoulli(p)

Example 1. X  describes the bit stream from a traffic 

source, which is either on or off.  The generating function

G(z)=  p0z0 + p1z1  =  q + pz

E[X]=  G(1)(1) = p

V[X ]=  G(2)(1) + G(1)(1)(1 − G(1)(1))  = p(1 − p)  = pq

Example 2. The cell stream arriving 

at an input  port of an ATM switch:

in a time slot (cell slot)  there is a

cell with probability p or the slot is

empty with probability q.



7.2. Binomial(n,p) distribution  X ∼ Bin(n, p)

Definition: If X ∼ Binomial(n, p), then X represents the number of successes 
in n Bernoulli(p) experiments (i.e.
𝑋 = σ𝑖=1

𝑛 𝑌𝑖 where Yi ∼Bernoulli(p) and the Yi are independent (i = 1, . . , n)

The p.m.f. of r.v. X is defined as follows

Pr 𝑋 = 𝑖 = 𝐶𝑛
𝑖𝑝𝑖(1 − 𝑝)𝑛−𝑖 i = 0,1,...,n, 0 ≤ p ≤ 1.  𝐶𝑛

𝑖 = 𝑛
𝑖

Lecture: Reminder of probability 54

e.g. Probability mass function of
the Binomial(n, p) distribution, 

with n = 4 and p = 0.3.

Note: prove that Binomial is a probability distribution
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Binomial distributionX ∼ Bin(n, p)

The generating function is obtained directly from the generating function q+ pz of a

Bernoulli  variable   G(z) = (q + pz)n or directly from the definition

G(z) = σ𝑖=0
∞ 𝑝𝑖𝑧

𝑖 = σ𝑖=1
𝑛 𝑛

𝑖 𝑝𝑖 (1 − 𝑝)𝑛−𝑖𝑧𝑖= σ𝑖=1
𝑛 𝑛

𝑖
(𝑝𝑧)𝑖 (1 − 𝑝)𝑛−𝑖= (𝑞 + 𝑝𝑧)𝑛

By identifying the coefficient of  zi in the expansion of  we have

𝑝𝑖 = 𝑃 𝑋 = 𝑖 = 𝑛
𝑖
𝑝𝑖(1 − 𝑝)𝑛−𝑖

E[X] = nE[Yi] = np

V[X] = nV[Yi] = np(1 −p)

A limiting form when λ = E[X] = np is fixed and 𝑛 → ∞ : using ex = lim
𝑛→∞

1 +
𝑥

𝑛

𝑛

𝐺(𝑧) = 1 − 1 − 𝑧 𝑝 𝑛= 1 − 1 − 𝑧
λ
𝑛

𝑛

→ e(z−1)λ

which is the generating function of a Poisson random variable.











deterministic sum: distribution



deterministic sum: distribution



random sum: distribution



random sum: distribution
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