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Teletraffic theory I: Queuing theory

OUTLINE:

• Z-transform:

– Definition;

– Properties;

– Inversion.

• Laplace transform:

– Definition;

– Properties;

– Inversion.
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1. Why transforms
Why we  are  going  to  consider  them separately:

• most problems for those who did not take specific math courses;

• provide a way to analyze queuing systems.

Types of  the transforms:

• Z transform;

• Laplace transform;

• Fourier transform;

• . . .

How  we  call transforms:

• just transform (referring to any transform);

• Z-transform: (probability) generating function;

• Laplace transform: Laplace-Stieltjes transform.
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Why we  are  going  to  use transforms:

• they naturally appear in analysis of queues;

• they simplify the calculation;

• sometimes they are the only tool.

What kind  of  transforms  we  are  going  to consider:

• Z transform for discrete RVs.

• Laplace transform for continuous RVs;

We  basically follow:

• L. Kleinrock, ”Queuing systems, Volume I: Theory,” John Wiley & Sons;

• R. Gabel, R. Roberts, ”Signals and linear systems,” John Wiley & Sons;

• Internet, e.g. www.wikipedia.org
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2. Z transform
Assume:  we are given discrete function defined on RV X , which takes nonnegative
values , X  ∈{0, 1, 2, . ..}.

Denote the point probabilities by pi  
(1)

What we  want:  compress it into a single one such that:

• it passes unchanged through the system;

• we can decompress it.

Do the following:

• tag each value in sequence multiplying by 𝑧 𝑖 :

– why 𝑧 𝑖 :  i is unique, thus, 𝑧 𝑖 is unique for each 𝑝𝑖.

• get a single function depending on z  only G(z) (or GX(z); also X (z)  or ෠𝑋(z) ) by summing all

terms:

𝐺 𝑧 = 𝐺𝑋(𝑧) =෍

𝑖=0

∞

𝑝𝑖𝑧
𝑖 = 𝐸[𝑧𝑋]

(2)

– which is called z-transform (or generating function or geometric transform).
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2. Z transform

Rationale
•A handy way to record all the values {p0, p1, . . .}; z is a ‘bookkeeping variable’

•Often G(z) can be explicitly calculated (a simple analytical  expression)

•When G(z) is given, one can conversely deduce the values {p 0, p1, . . .}

• Some operations on distributions correspond to much simpler operations on the 

generating  functions

•Often simplifies the solution of recursive  equations, eg. Using generating function to 
find an explicit formula for Fibonacci no. Fn
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Condition  of  existence  for z-transform:

• terms in a sequence grow no faster than geometrically;

• meaning that  if there is a >  0 for which the following holds:

(3)

– for this sequence z-transform is unique.

Analyticity:

• the sum of all terms in 𝑝𝑖 must be finite;

• if so, then G (z) is analytic on a unit circle |z|≤ 1;

• in this case we have:

(4)

Note:  analyticity means that  the function has unique derivative.
In mathematics, an analytic function is a function that is locally given by a convergent 
power series.
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lim
𝑖→∞

𝑝𝑖
𝑎𝑖

= 0

G 1 = σ𝑖=0
∞ 𝑝𝑖
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(5)

(6)

1. Getting z-transforms:  Kleinrock page 328 

Delta function 𝛿i =  1, i =  0, 𝛿i =  0, i ≠ 0:

• since the only one term is non-zero corresponding to i =  0 we have from (2) , 

exactly one term in infinite summation is nonzero and so we have transform pair:

𝐺 𝑧 =෍

𝑖=0

∞

𝛿𝑖𝑧
𝑖 𝛿𝑖 ↔ 𝑧0 = 1

Delta function  shifted  to the right by k: 𝛿i−k =  1, i =  k, 𝛿i =  0, i ≠ k:

• since the only one term is non-zero corresponding to i =  k we have:

𝛿𝑖−𝑘 ↔ 𝑧𝑘

Unit step function: ui = 1, i = 0, 1, . . . :

• recall that  ui=  0 for i < 0;

• we have geometric series:
(7)
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𝑢𝑖 ↔ ෍

𝑖=0

∞

1𝑧𝑖 =
1

1 − 𝑧

𝐺 𝑧 =෍

𝑖=0

∞

𝑝𝑖𝑧
𝑖
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Geometric series: p i = A𝛼i, i = 0, 1, . . . :

• calculate z-transform as follows:

(8)

• therefore, we have:

(9)

• z-transform is analytic for |z|≤ 1 / 𝛼.

Arbitrary sequence: { p0 = −2, p1 = 0, p2 = 4, p3 = −6 }:

• calculate z-transform as follows:

(10)
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𝐺(𝑧) = ෍

𝑖=0

∞

𝐴𝛼𝑖𝑧𝑖 = 𝐴෍

𝑖=0

∞

(𝛼𝑧)𝑖 =
𝐴

1 − 𝛼𝑧

𝐺 𝑧 = ෍

𝑖=0

3

𝑝𝑖𝑧
𝑖 = −2 + 4𝑧2 − 6𝑧3

𝑝𝑖 = 𝐴𝛼𝑖 ↔
𝐴

1 − 𝛼𝑧
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2. Properties of z-transform

Convolution property: Let X and Y   be independent

RVs  with corresponding distributions: 

𝑝𝑖= P{X = i} >0   i = 0, 1, . . . ; 

𝑞𝑗= P{Y = j} >0     j = 0, 1, . . . ;

• denote their transforms by GX(z) and GY(z);

• convolution is defined as follows:   𝑝𝑖⨀𝑞𝑖 ↔ σ𝑘=0
𝑖 𝑝𝑖−𝑘𝑞𝑘 (11)

• derive the transform of the convolution as:

𝑝𝑖⨀𝑞𝑖 ↔෍

𝑖=0

∞

𝑝𝑖⨀𝑞𝑖 𝑧
𝑖 =෍

𝑖=0

∞

෍

𝑘=0

𝑖

𝑝𝑖−𝑘𝑞𝑘𝑧
𝑖−𝑘𝑧𝑘

(12)

• change the summation σ𝑖=0
∞ σ𝑘=0

𝑖 =σ𝑘=0
∞ σ𝑖=𝑘

∞
to get as:

𝑝𝑖⨀𝑞𝑖 ↔෍

𝑘=0

∞

𝑞𝑘𝑧
𝑘෍

𝑖=𝑘

∞

𝑝𝑖−𝑘𝑧
𝑖−𝑘 = ෍

𝑘=0

∞

𝑞𝑘𝑧
𝑘 ෍

𝑚=0

∞

𝑝𝑚𝑧
𝑚 = 𝐺𝑋 𝑧 𝐺𝑌(𝑧) (13)
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3. Inverting z-transform Why we  need it:

• sometimes we need to get p i when we have G (z);

• example: queuing systems, we will see...

Methods  to  invert transforms: three methods

1- Develop G(z) in a power series, from which the p i can be identified as the coefficients of  
the z i. The coefficients can also be calculated by  derivation (this is actually uses intermediate 
value theorem (property 18):

(14)

– complicated when many terms are required.  Example: see next slide
2- By inspection: decompose G(z) in parts the inverse transforms of which are   known;

e.g. the partial fractions (usage of the  inversion formula (see, for example, Kleinrock, ”Queuing systems, Vol. I  ”))

3. By a (path) integral on the complex  plane

𝑝𝑖 =
1

2𝜋𝑗
ර
𝐺(𝑧)

𝑧𝑖+1
𝑑𝑧

Note:  all methods are, a t  least, time-consuming!!!
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𝑝𝑖 = อ
1

𝑖!

𝑑𝑖𝐺 𝑧

𝑑𝑧𝑖
𝑧=0

=
1

𝑖!
𝐺 𝑖 0

path encircling the origin (must be chosen so  that the 

poles of G(z) are outside the  path)



More Examples:

⇒

Example 2

Since corresponds to sequence A · ai we deduce

𝐺 𝑧 =
1

1 − 𝑧2
= 1 + 𝑧2 + 𝑧4 + ⋯

𝑝𝑖 = ቊ
1 𝑓𝑜𝑟 𝑖 𝑒𝑣𝑒𝑛
0 𝑓𝑜𝑟 𝑖 𝑜𝑑𝑑

𝐺 𝑧 =
1

(1 − 𝑧)(2 − 𝑧)
=

2

1 − 𝑧
−

2

2 − 𝑧
=

2

1 − 𝑧
−

1

1 − 𝑧/2

𝐴

1 − 𝑎𝑧

𝑝𝑖 = 2 . (1)𝑖−1 .
1

2

𝑖

= 2 −
1

2

𝑖

16
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4. Example: inverting using inspection method

Basis:  partial-fraction expansion:

• technique for expressing a rational function of z  as a sum of simple terms;

• the idea: get elements that  are easily invertible;

• possible when G (z) is rational function of z: G (z) = N (z)/D(z);

• possible when the degree of nominator is less than that  of denominator (if not, make it so!).

What we want:

• get terms like: 

𝐴𝛼𝑖 ↔
𝐴

1−𝛼𝑧
,  

1

𝑚!
𝑖 + 𝑚 𝑖 + 𝑚 − 1 … 𝑖 + 1 𝛼𝑖 ↔

1

(1−𝛼𝑧)𝑚+1
(15)

What we  then use:

• sum of the transforms equals to the transform of the sum:

𝑎𝑝𝑖 + 𝑏𝑞𝑖 = 𝑎𝐺𝑋 𝑧 + 𝑏𝐺𝑌(𝑧) (16)

Lecture:  Laplace and Z transforms 17
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Assumptions:

• D(z) in G (z) = N (z) /D(z) is already in factored form:

(17)

– l th  root is a t  1 / 𝛼l occurring ml times.

• Note:  putting D(z) in the factored form can be complicated.

Lecture:  Laplace and Z transforms 18

𝐷 𝑧 = ෑ

𝑙=1

𝑘

(1 − 𝛼𝑙𝑧)
𝑚𝑙
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If  above  is  satisfied  you  may  get F (z) in  the following form:

In the general form below: l th  root is a t  1/ 𝛼l  occurring ml times

(18)

where coefficients are given by

(19)
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G 𝑧 =
𝐴11

(1−𝛼1𝑧)𝑚1

+
𝐴12

(1−𝛼1𝑧)𝑚1
−1 +⋯+

𝐴1𝑚1

1−𝛼1𝑧
+

𝐴21

1−𝛼2𝑧 𝑚
2

+
𝐴22

1−𝛼2𝑧 𝑚
2
−1 +⋯

+
𝐴2𝑚2

1 − 𝛼2𝑧
+ ⋯+

𝐴𝑘1
1 − 𝛼𝑘𝑧

𝑚
𝑘

+
𝐴𝑘2

1 − 𝛼𝑘𝑧
𝑚

𝑘
−1 +⋯+

𝐴𝑘𝑚𝑘

(1 − 𝛼𝑘𝑧)

𝐴𝑙𝑗 = อ
1

𝑗 − 1 !
(−

1

𝛼𝑙
)𝑗−1

𝑑𝑗−1

𝑑𝑧𝑗−1
1 − 𝛼𝑙𝑧

𝑚𝑙
𝑁 𝑧

𝐷(𝑧)
𝑧=1/𝛼𝑙

Multiplying by                          discards multi- root z= 1/ 𝛼l in denominator and thus the expression 
at z= 1/ 𝛼l is unambiguous

1 − 𝛼𝑙𝑧
𝑚𝑙
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Example: Kleinrock page 336

(20)

Do the following:

• observe that  denominator and nominator have the same degree (i.e. 3);

– we have to put it in a proper form (degree of nominator must be strictly less);

– to do so factor out two powers of 𝑧2 to get:

(21)

• denote the rest by R(z):

(22)

– there are three poles of denominator: single pole z =  1 /4 and double pole z = 1/2;

– we have k = 2, 𝛼1 = 4, m1 = 1, 𝛼2 = 2, m2 = 2.

Lecture:  Laplace and Z transforms 20

𝐺 𝑧 = 𝑧2
4 1 − 8𝑧

1 − 4𝑧 1 − 2𝑧 2

𝐺 𝑧 =
4𝑧2 1 − 8𝑧

1 − 4𝑧 1 − 2𝑧 2

𝑅 𝑧 =
4 1 − 8𝑧

(1 − 4𝑧)(1 − 2𝑧)2
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• now we can rewrite R(z) = [4(1 − 8z)]/[(1 − 4z)(1 − 2z)2] as

(23)

• get elements A11, A21  and A22  as follows:

(24)

• we get the following expression for R(z): (25)
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𝑅 𝑧 =
4 1 − 8𝑧

(1 − 4𝑧)(1 − 2𝑧)2
=

𝐴11
1 − 4𝑧

+
𝐴21

(1 − 2𝑧)2
+

𝐴22
1 − 2𝑧

𝐴11= 1 − 4𝑧 ȁ𝑅 𝑧
𝑧=

1
4
=

4 1 −
8
4

1 −
2
4

2 = −16

𝐴21 = 1 − 2𝑧 2 ቚ𝑅 𝑧
𝑧=

1
2

=

4 1 −
8
2

(1 − (4/2))
= 12

𝐴22 = −
1

2

𝑑

𝑑𝑧
1 − 2𝑧 2 ቚ𝑅 𝑧

𝑧=
1
2

= ቤ−
1

2

𝑑

𝑑𝑧

4 1 − 8𝑧

1 − 4𝑧
𝑧=

1
2

= −
1

2
ቤ

1 − 4𝑧 −32 − 4 1 − 8𝑧 −4

1 − 4𝑧 2
𝑧=

1
2

= 8

𝑅 𝑧 = −
16

1 − 4𝑧
+

12

1 − 2𝑧 2 +
8

1 − 2𝑧
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• check that you got the same as initially had (place terms under common denominator);

• now we can invert R(z) by inspection:

– first and third terms are in the form: A 𝛼i ⇔ A/(1 − 𝛼z);

−
16

1−4𝑧
⇔−16 4 𝑖

8

1−2𝑧
⇔8 2 𝑖

– second term is in the form: (1/m!)(i + m)(i + m − 1) . . . (i + 1) 𝛼i ⇔ 1/(1 − 𝛼z)m+1;

12

1−2𝑧 2 ⇔12 𝑖 + 1 2 𝑖
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(26)

– using property 8 we take into account factor z2  in G(z):

(27)

– finally optimizing the expression we have for p i:

(28)

Notes:  other examples are in detail in R. Gabel, R. Roberts, ”Signals and 
linear systems”.
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𝑅 𝑧 ↔ 𝑞𝑖 = ቊ
0 𝑖 < 0

−16 4 𝑖 + 12 𝑖 + 1 2 𝑖 + 8 2 𝑖 𝑖 = 0,1, …

𝑝𝑖 = −16 4 𝑖−2 + 12 𝑖 − 1 2 𝑖−2 + 8 2 𝑖−2 𝑖 = 2,3,…

𝑝𝑖 = 0, 𝑖 < 2,
𝑝𝑖 = 3𝑖 − 1 2 𝑖 − 4 𝑖 𝑖 = 2,3, …

– using the linearity agi + bqi = aGX(z) + bGY(z) we get:
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3. The Laplace transform: Kleinrock page 338

Assume:  we are given continuous function f (t) defined on nonzero values:

(29)

(30)

What we  want:  compress it into a single one such that:

• it passes unchanged through the system;

• we can decompress it.

Do the following:

• tag each value of f (t) multiplying by e−st:

– why e−st:  t is unique, thus, e−st  is unique for each f (t);

– why e−st:  exponentials pass through linear time-invariant systems unchanged.

• get a single function by integrating over all non-zero values:

𝐹 𝑠 = ∞−׬
∞
𝑓(𝑡)𝑒−𝑠𝑡𝑑𝑡

– which gives two-sided Laplace transform.
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𝑓 𝑡 = 0, 𝑡 < 0
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Our case:  since f (t) defined on nonzero values we have:

(31)

• which gives one-sided  Laplace transform (0 means 0−  which means 0 − 𝜖 for 𝜖> 0, 𝜖→ 0).

Condition  of  existence  for  Laplace transform:

• terms in a sequence must grow no faster than exponential;

• meaning that  if there is real number 𝜎𝑎 for which the following holds:

(32)

– Laplace transform exists and unique.

Analyticity of  the  Laplace transform:

• the integral of f (t) must be finite;

• if so, then F(s) is analytic on a right hand plane of Re(s) ≥ 0:

(33)
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𝐹 𝑠 = න
0

∞

𝑓(𝑡)𝑒−𝑠𝑡𝑑𝑡

lim
𝜏→∞

න
0

𝜏

𝑓(𝑡) 𝑒𝜎𝑎𝑡𝑑𝑡 < 0

𝐹 0 = න
0

∞

𝑓(𝑡)𝑑𝑡
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3.1. Getting Laplace transform

Example:  one  sided  exponential function:

(34)

• get the Laplace transform as follows

. (35)

Example:  unit  step function:

(36)

• consider it as a special case of one-sided exponential function to get:

(37)

Lecture:  Laplace and Z transforms 26

𝑓 𝑡 = ቊ 𝐴𝑒
−𝑎𝑡 𝑡 ≥ 0

0 𝑡 < 0

𝑓 𝑡 ↔ 𝐹 𝑠 = න
0

∞

𝐴𝑒−𝑎𝑡𝑒−𝑠𝑡 𝑑𝑡 = 𝐴න
0

∞

𝑒−(𝑎+𝑠)𝑡 𝑑𝑡 =
𝐴

𝑠 + 𝑎

𝑢 𝑡 = ቊ
1 𝑡 ≥ 0
0 𝑡 < 0

𝑢 𝑡 ↔ 𝐹 𝑠 =
1

𝑠
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2. Properties of the Laplace transform

Convolution property:

• consider f (t) > 0, g(t) > 0 for t ≥ 0 only;

• denote their transforms by F(s) and G(s);

• convolution is defined as follows:

(38)

– in our case the lower limit is 0− ,  the upper limit is ∞.

• derive the transform of the convolution as:׬𝑡=0
∞

𝑥=0׬
𝑡

= 𝑥=0׬
∞

𝑡=𝑥׬
∞

(39)
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𝑓 𝑡 ⊙ 𝑔(𝑡) ↔ න
−∞

∞

𝑓(𝑡 − 𝑥)𝑔(𝑥)𝑑𝑥

𝑓 𝑡 ⊙ 𝑔 𝑡 ↔ න
𝑡=0

∞

𝑓 𝑡 ⊙ 𝑔(𝑡) 𝑒−𝑠𝑡𝑑𝑡 = න
𝑡=0

∞

න
𝑥=0

𝑡

𝑓 𝑡 − 𝑥 𝑔 𝑥 𝑑𝑥 𝑒−𝑠𝑡𝑑𝑡

= න
𝑡=0

∞

න
𝑥=0

𝑡

𝑓 𝑡 − 𝑥 𝑒−𝑠 𝑡−𝑥 𝑑𝑡 𝑔 𝑥 𝑒−𝑠𝑥𝑑𝑥 = න
𝑥=0

∞

න
𝑡=𝑥

∞

𝑓 𝑡 − 𝑥 𝑒−𝑠 𝑡−𝑥 𝑑𝑡 𝑔 𝑥 𝑒−𝑠𝑥𝑑𝑥

= න
𝑥=0

∞

𝑔 𝑥 𝑒−𝑠𝑥𝑑𝑥න
𝑣=0

∞

𝑓 𝑣 𝑒−𝑠𝑣𝑑𝑣 = 𝐹 𝑠 𝐺 𝑠
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3.3.  Two-sided Laplace transform

If f (t) may the nonzero  anywhere  on  the axis:

(40)

• define the following functions:

.
(41)

(42)

• one may get Laplace transform as follows:

• we have the following property:

(43)
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𝑓 𝑡 ↔ 𝐹 𝑠 = න
−∞

∞

𝑓(𝑡)𝑒−𝑠𝑡𝑑𝑡

𝑓− 𝑡 = ቊ
𝑓 𝑡 𝑡 < 0
0 𝑡 ≥ 0

, 𝑓+ 𝑡 = ቊ
0 𝑡 < 0
𝑓 𝑡 𝑡 ≥ 0

𝑓 𝑡 = 𝑓− 𝑡 + 𝑓+ 𝑡

𝐹 𝑠 = 𝐹− −𝑠 + 𝐹+ 𝑠 , 𝑓− 𝑡 ↔ 𝐹− −𝑠 , 𝑓+ 𝑡 ↔ 𝐹+ 𝑠
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4. Inverting Laplace transforms

There  are  the  followingmethods:

• inspection method;

• formal inversion integral method.

Inspection method:

• use partial-fraction expansion to:

– rewrite F(s) as a sum of terms;

– each term should be recognizable as a transform pair.

• use linearity property to:

– invert the transform term by term;

– sum the result to recover f (t).

Note:  we have to ensure that  F(s) is a rational function of s and can be written as:

(44)
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𝐹 𝑠 = 𝑁(𝑠)/ 𝐷(𝑠)
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Do the following:

• ensure that  the degree of the nominator is less than that  of denominator:

– if this is not the case, make it so;

– to do so divide N (s) by D(s) until the remainder is less than the degree of D(s);

– partial-fraction expansion must be carried out for remainder;

– powers of s can be taken into account using transform 4 (see table).

• D(s) in F (s) = N (s)/D(s) is already in factored form:
(45)

– i th  root is a t  1 / 𝛼i  occurring mi times.

• note:  putting D(s) in the factored form can be complicated.
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𝐷 𝑠 = ෑ

𝑖=1

𝑘

(𝑠 + 𝛼𝑖)
𝑚𝑖
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If  the  above satisfied:

• rewrite F (s) as follows:

(46)

• coefficients are given by

(47)
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𝐹 𝑠 =
𝐵11

(𝑠 + 𝛼1)
𝑚

1

+
𝐵12

(𝑠 + 𝛼1)
𝑚

1
−1

+⋯+
𝐵1𝑚

1

𝑠 + 𝛼1

+
𝐵21

𝑠 + 𝛼2
𝑚

2

+
𝐵22

𝑠 + 𝛼2
𝑚

2
−1

+⋯+
𝐵2𝑚

2

𝑠 + 𝛼2

+⋯

+
𝐵𝑘1

𝑠 + 𝛼𝑘
𝑚

𝑘

+
𝐵𝑘2

𝑠 + 𝛼𝑘
𝑚

𝑘
−1

+⋯+
𝐵𝑘𝑚

𝑘

(𝑠 + 𝛼𝑘)

𝐵𝑖𝑗 = อ
1

𝑗 − 1 !

𝑑𝑗−1

𝑑𝑠𝑗−1
( 𝑠 + 𝛼𝑖

𝑚𝑖
𝑁(𝑠)

𝐷(𝑠)
𝑠=−𝛼𝑖
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Example:

. (48)

• the denominator is already in factored form;

• the degree of the denominator (4) is greater than that  of the nominator (2);

• we have k =  2, α1 =  3, m1 =  1, α2 =  1, m2 = 3;

• we write F (s) as:

(49)

• it is easy to derive B11  and B21:

(50)

(51)
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𝐹 𝑠 =
8 𝑠2 + 3𝑠 + 1

(𝑠 + 3)(𝑠 + 1)3

𝐹 𝑠 =
𝐵11
𝑠 + 3

+
𝐵21

(𝑠 + 1)3
+

𝐵22
(𝑠 + 1)2

+
𝐵23
𝑠 + 1

𝐵11 = 𝑠 + 3 ȁ𝐹(𝑠) 𝑠=−3 = 𝑠 + 3 ቤ
8 𝑠2 + 3𝑠 + 1

(𝑠 + 3)(𝑠 + 1)3
𝑠=−3

= 8
9 − 9 + 1

−2 3
= −1

𝐵21 = (𝑠 + 1)3 ቚ𝐹(𝑠)
𝑠=−1

= 8
1 − 3 + 1

2
= −4
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• derive B22  differentiating as follows:

(52)

• derive B23  differentiating B22  once more (what we had prior to evaluation at  s = −1):

(53)

• finally, we have the following expression for F(s): (54)
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𝐵22 =
𝑑

𝑑𝑠
อ

8 𝑠2 + 3𝑠 + 1

(𝑠 + 3)
𝑠=−1

= อ
8 𝑠 + 3 2𝑠 + 3 − 𝑠2 + 3𝑠 + 1 1

𝑠 + 3 2

𝑠=−1

= อ
8 𝑠2 + 6𝑠 + 8

𝑠 + 3 2

𝑠=−1

= 8
1 − 6 + 8

𝑠2
= 6

𝐵23 =
1

2!

𝑑2

𝑑𝑠2
ቤ

8 𝑠2 + 3𝑠 + 1

𝑠 + 3
𝑠=−1

= อ
1

2
8

𝑑

𝑑𝑠

𝑠2 + 6𝑠 + 8

𝑠 + 3 2

𝑠=−1

= 4 อ
𝑠 + 3 2 2𝑠 + 6 − 𝑠2 + 6𝑠 + 8 𝑠 + 3

𝑠 + 3 4

𝑠=−1

= 4
224 − 1 − 6 + 8 2 2

24
= 1

𝐹 𝑠 =
−1

𝑠 + 3
+

−4

(𝑠 + 1)3
+

6

(𝑠 + 1)2
+

1

𝑠 + 1
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• finally, we have after inversion:1st and last term using 8 and 2nd and 3rd using 10 of the Table, 
thus we have 

(55)

Checking  for  errors  when  doing  partial-fractionexpansion:

• once we have partial-fraction expansion:

– combine terms and compare to initial expression for F (s).

• once we get f (t):

– try to get Laplace transform and compare to F (s).

Notes:  other examples are in detail in R. Gabel, R. Roberts, ”Signals and linear systems”.
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𝑓 𝑡 = −𝑒−3𝑡 − 2𝑡2𝑒−𝑡 + 6𝑒−𝑡 + 𝑒−𝑡 𝑡 ≥ 0

𝑓 𝑡 = 0 𝑡 < 0



Relations between different notions of transforms: 

Lecture:  Laplace and Z transforms 39



Relations between different notions of transforms: 

Lecture:  Laplace and Z transforms 40



Relations between different notions of transforms: 
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Relations between different notions of transforms: 
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Relations between different notions of transforms: 
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Relations between different notions of transforms: 
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Relations between different notions of transforms: 

1- Moment GF: assume RV X with cdf 𝐹𝑋 𝑥

𝑀𝑋 𝜃 = 𝐸 𝑒𝜃𝑋 = ∞−׬
∞
𝑒𝜃𝑋𝑑𝐹𝑋 𝑥

or  𝑀𝑋 𝑠 = 𝐸 𝑒𝑠𝑋 = ∞−׬
∞
𝑒𝑠𝑋𝑑𝐹𝑋 𝑥

• n-th moment  𝐸 𝑥𝑛 = 𝑚𝑋
𝑛

0
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2- Probability GF : assume RV X with pmf 𝑃𝑘

𝑃𝑋 𝑧 ≜ 𝐸 𝑧𝑋 = σ𝑘=0
∞ 𝑃𝑘𝑧

𝑘 𝑧 ≤ 1

• Tail GF          Q(z)= 
)1−𝑃(𝑧

1−𝑧
𝑃𝑋 𝑥 >k



Generating functions: synopsis

3- Laplace Transform of continuous function f(x) defined on 
nonzero values

𝜙𝑋 𝑠 = 0׬
∞
𝑓𝑋 𝑥 𝑒−𝑠𝑥𝑑𝑥 = 𝐸 𝑒−𝑠𝑋

• n-th moment

𝐸 𝑋𝑛 = −1 𝑛𝜙𝑋
𝑛

0
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4- Characteristic function (Fourier –Stieltjes 𝐹𝑋 𝑥 )

𝜙𝑋 𝜔 = 𝐸 𝑒𝑗𝜔𝑋 = ∞−׬
∞
𝑒𝑗𝜔𝑥𝑑𝐹𝑋 𝜔 −∞ < 𝜔 < ∞
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Relating Characteristic function / Moment Generating function
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𝜙𝑋 𝜔 = 𝑀𝑋 𝜃 ȁ𝜃=𝑗𝜔

Relating Probability Generating function/ Moment Generating 
function 

𝑒𝜃 = 𝑧 𝑔𝑋 𝑧 = 𝐸 𝑧𝑋Using                                              and

𝑔𝑋 𝑒𝜃 = 𝐸 𝑒𝜃𝑋 = 𝑀𝑋 𝜃

Using                                              and𝜃 = ln 𝑧 𝑔𝑋 𝑧 = 𝐸 𝑧𝑋

𝑀𝑋 𝜃 ȁln(𝑧) = 𝑀𝑋(ln )𝑧 = 𝐸 𝑒𝑋 ln 𝑧 = 𝐸 𝑒ln 𝑧
𝑋

= 𝐸 𝑧𝑋 = 𝑔𝑋 𝑧



Transforms- examples

• Also called moment generating functions of random 

variables

• The transform of the distribution of a random variable is a 

function of a free parameter , defined by

– If       is discrete 

– If       is continuous
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Illustrative Examples (1/5)

• Example 4.22. Let
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Illustrative Examples (2/5)

• Example 4.23. The MGF Transform of a Poisson 

Random Variable. Consider a Poisson random variable 

with parameter    : note: there is Z- transform as well
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Illustrative Examples (3/5)

• Example 4.24. The Transform of an Exponential Random 

Variable.  Let be an exponential random variable with 

parameter :

X
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Illustrative Examples (4/5)

• Example 4.25. The Transform of a Linear Function of a 

Random Variable. Let be the transform associated 

with a random variable . Consider a new random 

variable . We then have

– For example, if       is exponential with parameter          and 

, then
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Illustrative Examples (5/5)

• Example 4.26. The Transform of a Normal Random 

Variable. Let be normal with mean and variance     .X  2
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From Transforms to Moments (1/2)

• Given a random variable      , we have 

Or 

• When taking the derivative of the above functions with 

respect to       (for example, the continuous case) 

– If we evaluate it at         , we can further have
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From Transforms to Moments (2/2)

• More generally, taking the differentiation of             

n times with respect to      will yield  
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Illustrative Examples (1/2)

• Example 4.27. Given a random variable      with PMF: X
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Illustrative Examples (2/2)

• Example. Given an exponential random variable      with 

PMF: 
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