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OUTLINE:

e /-transform:
— Definition;
— Properties;

— Inversion.

e [.aplace transform:
— Definition;
— Properties;

— Inversion.
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1. Why transtforms

Why we are going to consider them separately:
e most problems for those who did not take specific math courses;
e provide a way to analyze queuing systems.

Types of the transforms:

e / transform;

e Laplace transform;

e Fourier transform;

o ..

How we call transforms:

e just transform (referring to any transform);

e /-transform: (probability) generating function;

e [aplace transform: Laplace-Stieltjes transform.
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Why we are going to use transforms:
e they naturally appear in analysis of queues;
e they simplify the calculation;

e sometimes they are the only tool.

What kind of transforms we are going to consider:
e 7/ transform for discrete RVs.

e [aplace transform for continuous RVs;

We basically follow:
e L. Kleinrock, " Queuing systems, Volume I: Theory,” John Wiley & Sons;
e R. Gabel, R. Roberts, 7 Signals and linear systems,  John Wiley & Sons;

e [nternet, e.g. www.wikipedia.org
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2. Z transform

Assume: we are given discrete function defined on RV X , which takes nonnegative
values , X €{0,1,2,...}.

Denote the point probabilities by pj p; = P{X =i} (1)

What we want: compress it into a single one such that:

For a (complex valued) sequence (ay, ), there is the associated

e 1t passes unchanged through the system;

e we can decompress it.
and the

Do the following:
e tag each value in sequence multiplying by z¢:
— why z!: iisunique, thus, z* is unique for each p;.

e get a single function depending on z only G(2) (or Gx(2); also X(z) or X(z) ) by summing all
terms:

6(2) = Gx(2) = ) pizt = Elz¥) .
i=0

— which 1s called z-transform (or generating function or geometric transform).
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2. Z transform

Rationale
e A handy way to record all the values {py, py, .. .}; Zisa ‘bookkeeping variable’

e Often G(z) can be explicitly calculated (a simple analytical expression)
* When G(z) 1s given, one can conversely deduce the values {pg, ;s - . .}

e Some operations on distributions correspond to much simpler operations on the
ogenerating functions

e Often simplifies the solution of recursive equations, eg. Using generating function to
find an explicit formula for Fibonacci no. F,
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Condition of existence for z-transform:
® terms 1n a sequence grow no faster than geometrically;

e meaning that if there 1sa> 0 for which the following holds:

lim 2P _ 3)

i—>oo al
— for this sequence z-transform 1S unique.
Analyticity:

e the sum of all terms 1n p; must be finite;
e if so, then G (2) is analytic on a unit circle |z| £ 1;

® in this case we have:

G(l) — Z?;O Pi (4)

Note: analyticity means that the function has unique derivative.
In mathematics, an analytic function 1s a function that 1s locally given by a convergent
pOWET series.
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1. Getting z-transforms: Kleinrock page 328
Delta functioné;= 1,i= 0,d8;= 0,i #0:

o0
e since the only one term is non-zero corresponding to i = 0 we have from (2) , G(z) = Z PiZi
i=0

exactly one term 1n infinite summation 1s nonzero and so we have transform pair:
(0.0]
G(Z) =Z(SiZi 51'(_) ZO =1 (5)
=0

Delta function shifted to therightbyk: 6;-x= 1,i= k,§i= 0,i #k:

e since the only one term is non-zero corresponding to i = K we have:
6i—k L Zk (6)

Unit step function: ui= 1,i=10,1,...:

e recall that ui= 0 fori < 0;

11—z (7)
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Geometric series: p; = Aa/, i=0,1,...:

e calculate z-transform as follows:

< = A
= Lzl = — 8
G(z) E Aa'z AE (az) — (8)
=0 =0

e therefore, we have:

1—az 9)

e z-transform is analytic for |Z| £ 1/ a.

Arbitrary sequence: { po= —2,p1 = 0,p2 = 4,p3 = —6 }:

e calculate z-transform as follows:

3
G(z) = 2 zt = —2 + 4z% — 623
i=0 & (10)
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SEQUENCE Z=TRANSFORM

A n=0,12,... <> F(z) = > fuz"
n=1_0
| n =
2. (Sn = l
0 n #0
3 (sn_k ZL

k
5 Up_x >
| — 2
A
6. Ax™
|l — az
7. na™ i
(1 — az)?

Lecture: Laplace and Z transforms
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SEQUENCE Z-TRANSFORM
g 2
i
(1 —2)*
9. n*a® ki
(1 — az)?
10. n?® e
(1 —2)°
11. (n + 1)a” l
¢ (1 — a2)?
12. (n 4+ 1) :
. (n =
(1 —2)°
1 | J 1
13. ’m(n +m)n+m-—1)++(n + Na ( woTTTS
1
14, — e’

n!
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2. Properties of z-transform

Convolution property:Let X and Y be independent

RVs with corresponding distributions:
pi= P{X=i}>0 i=0,1,...;

qg;i= Y =j3+>0 j=0,1,...;

e denote their transforms by Gy(z) and Gy(2);

e convolution is defined as follows: p; ®©q; < Z;.{zo Pi-kqk
* derive the transform of the convolution as:

(0 0) o0 l
pi ©Og; © Z(Pi Og)z' = z z Di—kqrz' 2"
i=0

=0 k=0

e change the summation Zf‘;o Z;czo — Z]O(ozo chx;k

(1)

to get as:

p; Og; © 2 qrz® Z pi_xz" 7k = Z qrz® 2 Pmz™ = Gx(2)Gy(2)
k=0 i=k k=0 m=0

L4
VSN

—

(12)

(13)

S
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SEQUENCE 2-TRANSFORM
¥ L n=0 1.2 ... F(z)=zfnz"
n=>0

2. af, + bg, aF(z) + bG(2)
3. a*f, F(az)
4. farx n=0k2k,... F(Z%)

|
£ - [FG) — fo]

F(2) A
6. fﬂ+k k>0 7 — 2'1 Zl_"—lf;__]
1. fa 2F(z)
8.0 k>0 2"F(2)

d

0. nf,, 4 E F(Z)
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2-TRANSFORM

10

11
12

13

14.

15.

16.

17.

18.

19.

SEQUENCE
nn—=1Dn—-2),...,(n —m+ 1)f,
cJn ® &n
. fn _,fn—l

n
o I e, 1.2,
k=0

d
— fn (a is a parameter of f;)
da ;

Series sum property

Alternating sum property
Initial value theorem
Intermediate value theorem

Final value theorem

m

2™ — F(2)

zm
F(2)G(2)

(1 — 2)F(z)
F(z)

] —z
aF
= ()

F(l) i ngofn

F{=1) = Zo(—l)"ﬁ

F0) = f,
1 d"F(2)
ﬁ dz" z=0=fn

lim (1 — 2)F() = f,,

z—1
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3. Inverting z-transform Why we need it:
e sometimes we need to get Pp; when we have G (2);

® cxample: queuing systems, we will see...

Methods to invert transforms: three methods

1- Develop G(z) in a power series, from which the p; can be i1dentified as the coefficients of
the z!. The coefficients can also be calculated by derivation (this is actually uses intermediate
value theorem (property 18):

1diG 1
_1d6@E 1o (14)
i! dz! i!

Di
z=0
— complicated when many terms are required. Example: see next slide
2- By inspection: decompose G(z) in parts the inverse transforms of which are known;
e.g. the partial fractions (usage of the inversion formula (see, for example, Kleinrock, ” Queuing systems, Vol. 1))

3. By a (path) integral on the complex plane

pi

— 1 f Gz(f1) dz path encircling the origin (must be chosen so that the
2nj ) z poles of G(z) are outside the path)

Note: all methods are, at least, time-consuming!!!

Lecture: Laplace and Z transforms 15



Px(2) = px(0) + px(1)z + px(2)z* + ... + px(k)z* +

which yields through successive differentiation

Pxk) = 1| 7 ,‘px(z)J k=0,1,2,...

-0

More Examples:

G(Z)Z 2:1-|—Zz-|-Z4‘_|_...
11—z
N o 1 forieven
Pi 0 foriodd
Example 2
G(2) = 1 2 2 2 1
z (1—z)(2—z) 1—-2z 2-2z 1-z 1-2z/2
Since corresponds to sequence A - a' we deduce
1—az

=2.(1)-1 1i—z Ay
=201 (5) =2-(3)

16
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4. Example: inverting using inspection method
Basis: partial-fraction expansion:
e technique for expressing a rational function of z as a sum of simple terms;
e the 1dea: get elements that are easily invertible;
e possible when G (2) is rational function of z: G (2) = N (2)/D(2);
e possible when the degree of nominator 1s less than that of denominator (if not, make 1t so!).
What we want:

e oct terms like:

; A 1 ; 1
L o — (i ] — o (1 "o
Aa — . — (i+m)(+m—-1)...(+ Da e "
What we then use:
e sum of the transforms equals to the transform of the sum:
ap; + bq; = aGX(z) + bGy(2) (16)

Lecture: Laplace and Z transforms 17
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Assumptions:

e D(z) in G(2) = N(z2)/D(z) is already in factored form:

k
D(z) = 1_[(1 —az)™ (17)
1=1
— Ith root is at 1/ a; occurring m; times.
e Note: putting D(z) 1n the factored form can be complicated.
Lecture: Laplace and Z transforms 18
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If above is satisfied you may get F (z) in the following form:

In the general form below: Ith root is at 1/ a; occurring m; times

_ Aq1q A1z A1m, Azq Azp
G(Z) o (1—a12)m1 + (1—0(12)7"1_1 + + (1—a1Z) (1—a2Z)m2 (1—a22)m2_1 +
A A A A
n 2m, 4ot k1 + k2 1+ et kmy
(1 — CZZZ) (1 - C(kZ)mk (1 — C(kZ)m (1 - akz) (18)

where coefficients are given by

1 1 d] 1

~ G-l

z=1/a;

Multiplying by (1 — a;z)™ discards multi- root z= 1/ a; in denominator and thus the expression
atz= 1/ ay is unambiguous

Lecture: Laplace and Z transforms 19
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Example: Kleinrock page 336

G() = 47%(1 — 82) 20)
2=\ =421 = 22)2
Do the following:
e observe that denominator and nominator have the same degree (i.e. 3);
— we have to put 1t in a proper form (degree of nominator must be strictly less);
— to do so factor out two powers of z% to get:
4(1 - 8z)
_ 2
Glz) =z ((1 ~ 1) - zz)2> 2D
e denote the rest by R(2):
4(1 — 8z2)
R(z) = (22)

(1—-42)(1 — 22)?
— there are three poles of denominator: single pole z= 1/4 and double pole z= 1/2;

—wehave k=2, a1 =4, m=1,a=2, my= 2.

Lecture: Laplace and Z transforms 20
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e now we can rewrite R(z) = [4(1 — 82)]/[(1 — 4z)(1 — 22)4] as
4(1 - 8z) Aqq Ayq Az

R(z) = (1 —42)(1 — 2z2)? T 1-4z (1-22)* 1-2z

(-6
e
K (1-())

=1 (1-(4/2)

e oet elements A11, A21 and A2z as follows:

= —16

A= (1 - 4Z)R(Z)|Z

Ay =1 - 2z)* R(2)

12

(24)
_1d . _1d 4(1 — 82) 1 (1—-42)(—32) —4(1—-82)(—4) B
Azz = =5 (1= 22)°R(2) T 2z -4 | 1 2 (1= 47)? T 8
-1 -
e we get the following expression for R(2): (25)
16 12 8
R(z) = — +

1—4z (1—22)2+1—22

+ + (23)
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e check that you got the same as 1nitially had (place terms under common denominator);

e now we can invert R(z) by inspection:
— first and third terms are in the form: A a’/ & Al(1 — az);
16

— = l
s 16(4)
3 .
& [
1-2z 8(2)

— second term is in the form: (I/mDG+ M)(i+ m—=1)...(i+ D) o' © 1/(1 — az)m*1;
12
(1-22)2

S12(i + 1)(2)°

Lecture: Laplace and Z transforms 22
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— using the linearity ag; + bgi= aGy(z) + bG(z) we get:
0 1 <0

R(z) ©q; = {—16(4)i +12G+ 1) +81) i=0,1,.. (26)
— using property 8 we take into account factor z2 in G(2):
p; = —16(4)"2 + 12— 1?2 +8(2)2% i=23,.. 27)
— finally optimizing the expression we have for p;:
(28)

Di = 0, 1 < 2{ .
p; = Bi—1)(2)' - (4)! i=23,..

Notes: other examples are in detail in R. Gabel, R. Roberts, ” Signals and
linear systems’ .
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3. The Laplace transtorm: Kieinrock page 338

Assume: we are given continuous function f(t) defined on nonzero values:

f®)=0,t<0 (29)
What we want: compress it into a single one such that:
e 1t passes unchanged through the system;
e we can decompress it.
Do the following:
e tag each value of f(t) multiplying by est:
— why e7st: t is unique, thus, €75t is unique for each f(t);

— why e7St: exponentials pass through linear time-invariant systems unchanged.

e oct a single function by integrating over all non-zero values:

F(s)= [ f(t)e stdt (30)

— which gives two-sided Laplace transform.

Lecture: Laplace and Z transforms 24
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Our case: since f(t) defined on nonzero values we have:

F(s) = joof(t)e_“dt (31)
0

e which gives one-sided Laplace transform (0 means 0~ which means 0 — efor €> 0, €= 0).
Condition of existence for Laplace transform:
® terms 1n a sequence must grow no faster than exponential;

e mecaning that if there 1s real number g, for which the following holds:

T
T—00 0
— Laplace transform exists and unique.
Analyticity of the Laplace transform:
e the integral of f(t) must be finite;
e 1f so, then F(S) 1s analytic on a right hand plane of Re(s) = 0:
(33)

F(O):f f(t)dt
0

Lecture: Laplace and Z transforms 25



Teletrattic theory I; Queuing theory

3.1. Getting Laplace transform
Example: one sided exponential function:

Ae % t >0 (34)
t) =
f® {0 t<O0
e oct the Laplace transform as follows
(0] (0 0] A
f(t) © F(s) = j Ae e st dt = Aj e~ (@+)t g — (35)
0 0 s+a
Example: unit step function:
1 t=0 (36)
u(e) = {0 t <0
e consider it as a special case of one-sided exponential function to get:
1 (37)
u(t) o F(s) = S
Lecture: Laplace and Z transforms 260
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FUNCTION TRANSFORM
oo
1. f(1) t >0 <> F*(s) = f f(t)e‘s' dt
i
2. (1) (unit impulse) I
3. (¢t — a) g
d
4. u,(t) 4 — u, (1) o
dt

5. u_y(t) £ u-(t) (unitstep) -

Lecture: Laplace and Z transforms
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FUNCTION TRANSFORM
e—-l!S
6. u_,(t — a .
$
’n—l ]
7 ) = —
U_nll) (n —1)! sn
A
8. Ae*u(r)
S +a
9. te * u(r) :
(s + a)*
10 & at y ]
o e g I
n! : () (s + a)**!
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2. Properties of the Laplace transform
Convolution property:
consider f(t) > 0, g(t) > 0 for t = 0 only;

denote their transforms by F(S) and G(S);

convolution 1s defined as follows:

£ O g(t) & j £t — 0)g(x)dx (38)

— 1 our case the lower limit 1s 07, the upper limit 15 9.

e derive the transform of the convolution as:ft=0 fx=0 = fx=0 ftzx

t=0

0] (0'e] t
FOOgD o [ (F© O gm)estdt = j j £t —x)g(x)dx e=tdt
t=0+Yx=0

0 t 0
= j f f(t —x)e sEXdt g(x)e *dx = J f(t —x)e sEXdt g(x)e *dx
t=0Yx=0 x=0Yt=x (39)

= Joo g(x)e_sxdxjoo f()e™Ydv = F(s)G(s)
x=0 v=0

Lecture: Laplace and Z transforms 29
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FUNCTION TRANSFORM
1. f() t>0 <> F*(s) = | f(t)e*dt
-
2. af(t) + bg(t) aF*(s) + bG*(s)
. (%) (a > 0) aF*(as)
4. f(t — a) e~ F*(s)
5. e (1) F*(s + a)
dF*(s)
6. tf(t) e
n L d"F*(s)
7. t*f (1) Sol g
oo
8. AL, F*(s,) ds,
! Joy=8
t f* o0 oo o
9. %-) ], =8ds1 J; P ds, » =+ J; B ds,F*(s,
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FUNCTION TRANSFORM
10. f(r) ® g(1) F*(s)G*(s)
df(t)
(52 *
11. “? sF*(s)
df(t)
t no%x
12. o s"F*(s)
rt F*
130 | fayae S(S)
[t t F*
14t | f F@)dn)" S,ES)
J—0 . —00
n times
3 , 2
15. in f(1) [a is a parameter] % F(s)

16. Integral property
17. Initial value theorem

18. Final value theorem

F*(0) =f f(r)dt
8
lim sF*(s) = lim f(1)

§—» 0 t—-0
lim sF*(s) = lim f(z)
s—0 t—s 0

if sF*(s) is analytic for Re (s) > 0

Lecture: Laplace and Z transforms
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3.3. Two-sided Laplace transform

If f(t) may the nonzero anywhere on the axis:

FOoFE = foetd (40)
e define the following functions:
_|f@®) t<o0 10 t<o0
fo(0) = {’; T AGE {f(t) S0 (1)

e one may get Laplace transform as follows:

f@= O +£0) (42)

e we have the following property:

F(s) =F.(=s) + F.(s), f-(O) @ F(=s), fi(t) & Fi(s) (43)

Lecture: Laplace and Z transforms 32
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4. Inverting Laplace transforms
There are the following methods:

® nspection method;
e formal inversion integral method.
Inspection method:

® use partial-fraction expansion to:
— rewrite F(S) as a sum of terms;

— each term should be recognizable as a transform pair.

® use linearity property to:
— 1nvert the transform term by term;

— sum the result to recover f(t).

Note: we have to ensure that F(S) 1s a rational function of Sand can be written as:

F(s) = N(s)/ D(s) (44)

Lecture: Laplace and Z transforms 33
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Do the following:

e cnsure that the degree of the nominator 1s less than that of denominator:

— 1f this 1s not the case, make 1t so;
— to do so divide N (S) by D(s) until the remainder 1s less than the degree of D(S);
— partial-fraction expansion must be carried out for remainder;

— powers of Scan be taken into account using transform 4 (see table).

45
e D(s) in F(s) = N(s)/D(s) is already in factored form: (43)

k
D) = | [+ apm
i=1

— ith root is at 1/ a@; occurring m; times.

e note: putting D(S) in the factored form can be complicated.

Lecture: Laplace and Z transforms 34
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If the above satisfied:

e rewrite F (S) as follows:

F(s) = 11 B1, .t Bnn1
(s+ ap))™  (s+ ap)™ ! (s + aq)
N B;q B,, .t B2m2
(s+ a,)™  (s+ a,)™1 (s + ay)
(46)
_|_ -
By, N By i Bim,
(s + a;,)™ (s + az)™ 1 (s + ay)
e cocfficients are given by
1 df-l N(s)
B;; = s+ a)™
Lecture: [aplace and Z transforms 35
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Example:

_8(s*+3s+1)
) =6t D? )

e the denominator 1s already in factored form;

e the degree of the denominator (4) 1s greater than that of the nominator (2);
ewehave K= 2,a1= 3, mi= 1,a2= 1, my=3;
e we write F (S) as:

Bll BZl BZZ BZ3
s+3 G+13 T (5+1)? s+1 (49)

F(s) =

® it 1seasy to derive B11 and Boai:

P = G Oloams =0V, 70 Tr T
1-3+1
BZl - (S —+ 1)3F(S)| 4 = 8 2 = —4 (51)

Lecture: Laplace and Z transforms 36
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e derive By differentiating as follows:
5. d 8(s?2+3s+1)
27 ds  (s+3)

s=—1
8(s+3)2s+3)—(s?+3s+ 1)(1)
B (s + 3)2
s=—1
_ 8(s*+ 65 +8) _gl-6+8_ (52)
(s + 3)2 . s?
e derive B3 differentiating B2z oncesr;lore (what we had prior to evaluation at S= —1):

1 d? (8(52 + 3s + 1)> 1_d <(52 + 65 + 8))

23 7 21ds? (s+3) e e 27 ds\ (s+3)2 . 3
T == (53)
(s +3)2(2s+6)— (s> +65+8)(s +3) 2°4—-(1-6+8)(2)(2)
(s +3)% 24
s=—1
e finally, we have the following expression for F(S): (54)
—1 —4 6 1

F(s) =

S+3+(s+1)3+(s+1)2+s+1

Lecture: Laplace and Z transforms 37
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e finally, we have after inversion:1st and last term using 8 and 2™ and 3™ using 10 of the Table,
thus we have

(t) = —e 3t —2t?et+6et+et t=>0
(55)

f)=0t<o0

Checking for errors when doing partial-fraction expansion:

® once we have partial-fraction expansion:

— combine terms and compare to 1nitial expression for F (S).

® once we get f(t):

— try to get Laplace transform and compare to F(S).

Notes: other examples are in detail in R. Gabel, R. Roberts, 7 Signals and linear systems’ .
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Relations between different notions of transforms:

The Laplace transform is generally more useful than the moment gener-
ating function since it can be applied to functions that are not densities.”

The moment generating function is defined by

Mx() = [m e fr(x)dx

= E[&X], 6>, (5.44)

provided the integral exists. Expanding the exponential as a power series
and taking the expectation implies that

BE[X2] 6E[X3]

Mx(@)=1+4+60F[X]+ 51 + 3 +--- . (5.45)
From (5.45) it is easy to see that
Mx(0) =1 (5.46)
and the nth moment of the random variable is given by
MPO)=E[X"], n=12,..., (5.47)

and hence the name of the function is explained. From (5.40) we have
that

ok = ME(0) - (Mfilm})z- (5.48)
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Relations between different notions of transforms:

It is interesting to note that if X is a discrete random variable with

generating function Gx(z) then its moment generating function is given
by

Mx(8) = f P[X = z] €’ = Gx(e”). (5.50)

=0

This equals the generating function of X evaluated at z = exp[f]. Us-

ing this relationship we can state properties of probability generating
functions that are analogous to those just given for moment generating
functions.

Recall that from (4.24) the definition of the probability generating func-
tion for the discrete random variable X is

G (z) L iP[J{ — i) 2", (5.51)
i=0

which can also be viewed as the expectation
Gx(z) = E[2¥]. (5.52)
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Relations between different notions of transforms:

A function that is closely related to the moment generating function is
the Laplace transform.* For a given real valued function h(t),t > 0, the

“Laplace transform, denoted by h*(s), 1s defined by

h*(s) < fﬂm e " hix)dr. (5.54)

If A(t).f = 0, is a function corresponding to a density function of a
nonnegative random variable X then it is clear from (5.44) that the

Laplace transform of the function h*(s) equals the moment generating
function of X evaluated at —s, that is,

h*(s) = My (—s). (5.55)

To preserve the semantics associated with random variables we use the
“Ly(s) notation” when dealing with the Laplace transform of a random

variable X,

Lx(s) = [ﬂ e ™ fy(x)dx (5.56)

Mx(8) f " e fy(x)dz

Lecture: Laplace and Z transforms
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Relations between different notions of transforms:

use the “h*(s) notation” otherwise. Notice that an inferpretation of
the transform for the random variable case is that it is the expectation

of exp[—sX]| and thus can be written as
Lx(s)=E[e**].

Using (5.55) shows that the following relationship holds between the
moment generating function of X and its Laplace transform

Lx(s) = Mx(—s).

A probabilistic interpretation of the Laplace transform is found in Prob-
lem 5.21. Like the theorem for moment generating functions, Theorem
5.30, if two random variables have the same Laplace transform then they
are stochastically equal.

h(s) = Mx(—s). (5.55)
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Relations between different notions of transforms:

We write

f(t) = [(s)
to indicate transform pairs. The derivation of some elementary trans-

forms is given in the following example:

Example 5.31 (Derivation of Some Simple Transforms) Recall that

(= u]
! =f e “x"dr.
0

By a simple conversion this implies that

tnl 1

I::ﬂ.—l}! — S_ﬂr n=1,2,... . {5.5?]
Let
h(t) = Ae™™
then
= A
h*(s) =f e " e Mdt = s (5.58)
0
and thus
i — A
A48
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Relations between different notions of transforms:

Sequence Generating Function

Definition | fi,i=0,1,... | F(z) = oo fit

Lecture: Laplace and Z transforms
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Relations between different notions of transforms:

The Laplace transform is generally more useful than the moment gener-

ating function since it can be applied to functions that are not densities.”
The Laplace transform is the continuous counterpart of the ordinary gen-
erating function defined in Chapter 3. To see the relationship between
these two functions assume that the function h(t) takes on nonzero val-
ues for integer ¢, that is, that h{t) = hy, fort =i and i = 0,1,..., and
let H(z) be the generating function

H(z)=) hiz" h*(s) = Mx(—s). (5.55)
i=I
Then it follows that Mx(8) = P[X =z]e” = Gx(é?). (5.50)
=0

h*(s) = fﬂ " e h(z)dr = i e"%h; = H(e™*) (5.59)

i=I(]

and thus the Laplace transform equals the ordinary generating function
evaluated at e”*. If h; represents a probability density, then equations

(5.59) and (5.55) show that we have simply established a different form
of the relationship b n moment generating functions and their corre-
sponding probability generating functions for discrete random variables
given in (5.50).
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Relations between different notions of transforms:

Since Laplace transforms are equivalent to moment generating functions
when the underlying function is a density, it follows that they satisfy
analogous properties to those given for moment generating functions in
Section 5.3. For example, the analogous moment property to (5.47) is
given by

o) =(-1)"E[X"]. (5.60)

MPO)y=E[X"], n=12,..., (5.47)
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Relations between different notions of transforms:

1- Moment GF: assume RV X with cdf Fy (x)

00)

My (6) = E|e®*| = [~ e%%dFy(x)
or My(s) = E[es*] = [__ eSXdFx(x)
* n-th moment E[x™] = (n)(O)

2- Probability GF : assume RV X with pmf P,

Py(z) 2 E(zX) =X Pzt |z| <1
.+ TallGF  Qz)= P(ZZ) P, (x)>k
Lecture: Laplace and Z transforms 47



Generating functions: Synopsis

3- Laplace Transform of continuous function f(x) defined on
nonzero values

¢x(s) = fooo fx(x)e™*dx = E[e™**]
* n-th moment

E(X™) = (-1)"¢ P (0)

4- Characteristic function (Fourier =Stieltjes Fy (x) )

oo

eI dFy(w) —oo < w < 0o

Px(w) = E[e/*X] = [
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Generating functions: Synopsis

Relating Characteristic function / Moment Generating function

bx(w) = My(0) |g=je

Relating Probability Generating function/ Moment Generating
function
6 _

Using € =z and gx(z) = E(z%)
gx(e?) = E[eex] = My (6)

Using 0 = In(z) and gx(2) = E(z%)

MX(9)|1n(z) = My(Inz) = E(BXIHZ) =k (elnzx) = E(z%) = gx(2)
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Transforms- examples

« Also called moment generating functions of random
variables

 The transform of the distribution of a random variable X is a
function My (s) of a free parameter s , defined by

My (s)=Efes* |
— If X is discrete

M (5): Y e¥py (X)
X
— If X is continuous

M ()= 7, e% f (x)ox



lllustrative Examples (1/5)

« Example 4.22. Let

(1/2, if x=2,
Py (x)=<1/6, if x=3,
1/3, if x=5.

My (s)= E[eSX ]z %esx py (x)

_dleas  Loas 1oss
6 3

2

Notice that:
My (0)= E[eox ]Z > e py (x)
X

=Y px (x)=1



lllustrative Examples (2/5)

 Example 4.23. The MGF Transform of a Poisson
Random Variable. Consider a Poisson random variable X
with parameter 4 : note: there is Z- transform as well

et
Py (X)= o x=012,...
© -x -1
My (s)= X S
x=0 X!
—ety & (Leta:es/l)
x=0 X!
; a’ a’
—e et - McLaurinseries 1+a+§+§+--- =g



lllustrative Examples (3/5)

« Example 4.24. The Transform of an Exponential Random
Variable. Let X be an exponential random variable with
parameter 1 :

fy (x)=4e™™, x>0

My (s)= [ e™1e™ ™ dx
=Afy e(s=A)Xgx
(s—A)x
25
(s—4)
A

4 (if s—1<0)

A—S

Notice that :
M y (s)can be calculatedonly when's < 1



lllustrative Examples (4/5)

« Example 4.25. The Transform of a Linear Function of a
Random Variable. Let My(s) be the transform associated

with a random variable X . Consider a new random
variable Y =aX +b . We then have

MY (S) _ E[es(ax +b)]: esb E[esax ]: esb M " (Sa)

— For example, if X is exponential with parameter A =1 and
Y =2X+3, then
A 1

S e

1
M _ 3SM 2 _ 35_
v(s)=€"My (2s)=¢ =y



lllustrative Examples (5/5)

« Example 4.26. The Transform of a Normal Random
Variable. Let X be normal with mean # and variance o>

We first calculatethe transform of a standard
normal random variableY

fy(y)=———e¥ /2 ]
! (y) NPy Since we also know that Y = X ,
00 1 — O
My (s)= _ooesyﬁe y2/2dy : we can have X =oY + u
. _AS
_ e32/2 .J-oo 1 e—[(y2/2%5y+(52/2)]dy . Mx (S) =€ NMY (SO')
_:O_O_@ __________________ — eSlLl o e520-2/2
_ e82/2 LJ‘EOOO 1 e—(y—S)z/Zdy i _ es,u+(8202/2)
Al 27
s2/2 1



From Transforms to Moments (1/2)

« Given arandom variable X , we have

E[ SX] i SXfx x)jx (If X is continuous)

My (s)= E[eSX]: >e¥py(x)  (f X is discrete)

« When taking the derivative of the above functions with
respectto S (for example, the continuous case)

dMy (s) _ [, e™ fx (xx [ e (xK

ds ds
— |If we evaluate it at s=0 , we can further have .
the first moment of X
dM x ()

s ‘s:o =%, xe™ fy (x)dx\ 5=0 = o Xfx (x)dx = E[x]



From Transforms to Moments (2/2)

 More generally, taking the differentiation of M (s)
n times with respectto S will yield

d"My (s)

d"s ‘S=0 = Eooo x"e” fX (th‘ s=0 — fooo X" fX (th — E[Xn]

the n-th moment of X




lllustrative Examples (1/2)

« Example 4.27. Given a random variable X with PMF:

1/2, if x=2,
Py (x)=41/6, if x=3,
1/3, If x=5.

My (s)= E[esx ]= ZeSX px (x)

123+1 3s 153

==e e
2
dM (s d*M (s
L E[X]= ds( )l = E[X?] = ()\so
_loes el e*|s o I +1-9-e NES
2 6 2 6
3 5 19 9 25 71
=1+—+—-—=— =2+—=—+—=—
6 3 6 6 3 6

25-e°%|_o



lllustrative Examples (2/2)

 Example. Given an exponential random variable X with

PMF: f (x)=2e™ x>0
My (s)=[° e e dx
= Af5 e(s=)x gy
(s—4)x
e o0 i B
_/1(3_/1)0 (if s—1<0)
A
A-s
dM « (s d*M y (s
= E[X |= dé( )|s=0 :>E[X2]= d;;( )|s=o
_ A | _ 22 |
(A—s)?'°7 (2—s)*°7
1 2

A 2
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