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Perf Eval of Comp Systems
5. System of RVs: jointly distributed RVs

Basic notes:

e sometimes it is required to investigate two or more RVs;

e we assume that RVs X and Y are defined on some probability
space.

e Capital letters (i.e. X, Y ) are random variables
and small letters (i.e. x, y are given constants)

Lecture: Reminder of probability
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5. System of RVs: jointly distributed RVs
Definition: joint probability distribution function (JPDF) of RVs X and Y is:

Fyy (x,y) =Pr{X <x,Y <y} (78)
For continuous RV., Let us define:
Fy (x)=Pr{X<x} F,(y)=Pr{¥Y <y} XYER, (79
Fy (x)and Fy () are called marginal PDFs.
Marginal PDF can be derived form JPDF:

marginalize=neutralize=summing up to 1
Fx (x) = 311_{{)10 Fxy (x,y) = Fxy (x, ) (80)

Fy (y) = 3}1_{1(}0 Fyy (x,y) = Fxy (0,y)

Lecture: Reminder of probability
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(a) The joint probability distribution and
(b) the joint distribution function.

Lecture: Reminder of probability
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Definition: ifFyy (x,y) is differentiable then the following
function:

2
fxy(x,y) = dxdy Fyy (x,¥)

=Prix<X<x+dx,y<Y <y+dy}

is called joint probability density function (jpdf).

Lecture: Reminder of probability

(81)
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Assume then that Xand Y are discrete RVs.

Definition: joint probability mass function (Jpmf) of discrete RVs X and Y is:

fxy (6, y)=Pr{X = x,Y = y} (82)

Let us define:

fx() =Pr{X =x}  fy(y) =Pr{Yy =y} (83)
* these functions are called marginal probability mass functions (Mpmf).

Marginal pmfs can be derived from Jpmf:

L@ =D fr@y, KO =) fuby) 84
Vy Vx

Lecture: Reminder of probability
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Perf Eval of Comp Systems

5.1. Conditional distributions and Mean (on Events / RV)

Discret RV Definition: the following expression:
Pr{X=V)Y =y}

PTX|Y{-:y} = PTX|Y{- ly} = fX|Y(-»Y) = fX|Y(- ly) = PF{Y = y)

* gives conditional PF of discrete RV X given thatY =.

Conditional mean of RV X given Y =y can be obtained as:

EX[Y = y] = E x; Pryy{x|y}
—
Continous RV Definition: the following exlpression: fy(y)>0

_ fxy(x,y)
fX|Y(X|3’) = —fY(y) '

* gives conditional pdf of continuous RV X given that Y = y.

Conditional mean of RV X given Y =y from the following expression:
EIXIY = v = [ figedx

Lecture: Reminder of probability

(85)

(86)

(87)

(88)
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5.1. Conditional distributions and Mean (conditioning by event / RV)

Conditional CDF:
PriX < xY <y} Fxy(xy)
Pr{y < vy} Fy(y)

FXIY(XW) =Pr(X<x|Y <y) =

Conditional pdf: fy(y)>0

T .0 _ fxy(x,y)
fay(xly) = lim fi(x|Y = y) = lim == Fy(x|Y ~ y) = 0

Note:

0,
fxiy(xly) # an(XD’)

Since the condition in pdf is Y=y and the condition incdfisY <y

Lecture: Reminder of probability



Definition 2.19  Condifional PMF
Given the event B, with P|B| = 0, the conditional proebability mass function of X is

.P_,.'i'|3 ix) = P [.Y = ‘I.|B] .

Theorem 2.16 A random variable X resulting from an experiment with event space B, . . ., By has PMF

yates page 82 Py(x)=)_ Pns, (x) P[Bi].

i=1

Proof The theorem follows directly from Theorem 1.10 with 4 denoting the event [X = x}.

Theorem 2.17

Py (x) ceB
Pyg(x)y=1 P[B] '
0 otherwise.

The theorem states that when we learn that an outcome x € B, the probabilities of all
x & B are zero in our conditional model and the probabilities of all x € B are proportionally
higher than they were before we leamned x € B.

Ref. book: Probability and Stochastic Processes: A Friendly
Introduction for Electrical and Computer Engineers 2nd Edition
by David J. Goodman (Author), Roy D. Yates (Author)
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https://www.amazon.com/David-J-Goodman/e/B001H6NAX0/ref=dp_byline_cont_book_1
https://www.amazon.com/Roy-D-Yates/e/B00H4N6N0M/ref=dp_byline_cont_book_2

Theorem 4.6

yates pl61

Theorem 4.7

Example 4.4

A joint PDF fy y(x,y) has the following properties corresponding to first and second
axioms of probability (see Section 1.3):

fa) fxyi(x,y) = 0jorall (x,y),

o u] Do
b) f f fryix,yvydxdy =1
—o0 & —00

Given an expermment that produces a pair of continuous random varniables X and ¥, an
event 4 corresponds to a region of the X ¥ plane. The probability of 4 1s the double

integral of fy y(x, v) over the region of the X, ¥ plane corresponding to A.

The probability that the continuous random variables (X, ¥)arein A is

P[A]=f Jxy(x,y)dxdy.

F]
Random variables X and ¥ have joint PDF

] € 0=x=50=y=<3 8
ﬁtrh‘”_| 0 otherwise. (4.22)

Find the constantcand P[] = P2 <X <3 1=<¥ < 3]

The large rectangle in the diagram is the area of nonzero probability. Theorem 4.6
states that the integral of the joint PDF over this rectangle is 1:

5 p3
1= f f cdvdxy = 15¢c. 423
¥ b Jo € (4.23)

s A

) Therefore, ¢ = 1/15. The small dark rectangle in the dia-
gramistheevent A= (2 =X <3 1 <Y < 3}. P[d]isthe
integral of the PDF over this rectangle, which is

— X P.—l—sjldd—"lj 4.24
A= [ [ mavau=25 @29

This probability model is an example of a pair of random variables uniformly dis- 13
tributed over a rectangle in the X. ¥ plane.



Example 4.6 As in Example 4 4, random variables X and ¥ have joint PDF

ates page 165 : L) 1S 0=x=30=y=3,
V4 pag frirxn=1 , othentise. (4.30)

What is P[4] = P[Y > X]?

Applying Theorem 4.7, we integrate the density fx yix, v) over the part of the X ¥
plane satisfying ¥ > X. In this case,
Y

3 3
y>X pLa- | ( [ L) s
0 X 15

== (432)

» X

In this example, we note that it made little difference whether we integrate first over y
and then over x or the other way around. In general, however, an initial effort to decide
the simplest way to integrate over a region can avoid a lot of complicated mathematical
maneuvering in performing the integration.

https://www.youtube.com/watch?v=hcBiYZuST7U

eg applying Fubini’s theorem in calculating the

expectation of a RV as tail prob
14



Definition 4.8  Correlation Coefficient
The correlation coefficient of two random variables X and ¥ is

_ Cov[X,¥Y]  Cov[X, Y]
yates P175 = ANaxvany) | oxor

Note that the units of the covariance and the correlation are the product of the units of X
and ¥. Thus, if X has units of lalograms and ¥ has units of seconds, then Cov|.X, ¥ ] and
rx ¥ have units of kilogram-seconds. By contrast, p x ¥ 15 a dimensionless quantity.

An important property of the correlation coefficient 1s that 1t 1s bounded by —1 and 1:

Theorem 4.17
-l =pxy =1L

Proof Let cr‘%- am:lcrf.r denote the variances of X and ¥ and for a constant a, let ¥ = X —a¥. Then,
p p
Var| 7] :E[{I-ﬂ}’}‘] — (E[X—aY]?. (4.78)
Smee E[X = aY]| = py — apy, expanding the squares yields
Var[ W] = E [.1'1 - 2aXY + afrf] — (% = 2anxuy + algi,) (4.79)
= Var{ X] — 2a Cov [.X, ¥] + a* Var{T]. (4.80)

Since Var ] = 0 for any a, we have 2a CovlX, ] = Var{ X] + e Var{¥)]. Choosing a = ay /oy
yields CovlX, ¥] < opoy, which imphies py y < 1. Choosing a = —ay /oy yields Cov[X, I'] =
—ayay, Which implies py y = —1.

15



conditioning by event

Theorem 4.19  For any event B, a region of the X, ¥ plane with P|B] = 0,

Yates p178

Example 4.13

Pyyg(x,y)= P[B]
0

M {I*.\I} S _3'1

oftherwise.

Random variables X and Y have the joint PMF Py y(x, y)
as shown. Let B denote the event X + Y < 4. Find the
conditional PMF of X and Y given B.

y 1
} Pry(x.y) o
1 1
ol oI0
1 1 1
e el2 elo6
1 1 1 1
o7 oF T oT6
0o 1 2 3 4
Vv
4 Pxyg(x,y)
3
FYE!
3 3 1
o7 eold o7
0 1 2 4

Event B = {(1, 1), (2, 1), (2, 2), (3, 1)} consists of all points
(x, y) such that x + y < 4. By adding up the probabilities of
all outcomes in B, we find

P[B]=Pxy(1,1)+Pxy (2, 1)

.
+Pyxy(2,2)+ Pyy((3,1) = T

The conditional PMF Py yp(x, y) is shown on the left.

10



continuous RV
Definition 4.10 Conditional Joint PDF

Given an event B with P[B] > 0, the conditional joint probability density function of X
and Y is ey G.9)
xyrx,y
Yates p178 frys (x.y) = PB] (x,») € B,

0 otherwise.

Example 4.14 X and Y are random variables with joint PDF

] 1/15 0=x<50=<y=<3,
Jxy ®y) = l 0 otherwise. (4.83)
Find the conditional PDF of X and Y giventhe event B = {X + Y = 4}.
We calculate P[B] by integrating f x y(x, v) over the region B.
Y
A 3 5 |
t B P[B] = f f — dxdy (4.84)
0 Ja—y 15
1 3
— _f (1+y)dy (4.85)
15 Jo
_ X =1/2. (4.86)
Definition 4.10 leads to the conditional joint PDF
_J2/15 0=x=<50=<y=<3x+y=4,
fxyiB(x,y) = { 0 otherwise. (4.87)



Conditioning by a Random Variable

Yates p181

In Section 4.8, we use the partial knowledge that the outcome of an experiment (x, y) € B
in order to derive a new probability model for the experiment. Now we turn our attention
to the special case in which the partial knowledge consists of the value of one of the
random variables: either B = {X = x} or B = {Y = y}. Learning {¥ = y} changes our
knowledge of random variables X, ¥. We now have complete knowledge of ¥ and modified
knowledge of X. From this information, we derive amodified pr{}babili-ty model for X. The
new model is either a conditional PMF of X given Y or a conditional PDF of X given Y.
When X and Y are discrete, the conditional PMF and associated expected values represent a
specialized notation for their counterparts, Px y|z(x, y) and E[g(X, Y)|B] in Section 4.8.
By contrast, when X and Y are continuous, we cannot apply Section 4.8 directly because
P|B] = P[Y = y] = 0 as discussed in Chapter 3. Instead, we define a conditional PDF as

the ratio of the joint PDF to the marginal PDF.

18



Definition 4.12

Theorem 4.22

Conditional PMF
For any event Y = y such that Py(y) > 0, the conditional PMF of X given Y = y is

Pxjr (x|y) = P[X =x|Y = y].

For random variables X and Y with joint PMF Px y(x, y), and x and y such that Px(x) > 0
and Py(v) > 0,

Pxy(x,y) = Pxyy (x|y) Py (¥) = Pyix (¥|x) Px (x) .

Proof Referring to Definition 4.12, Definition 1.6, and Theorem 4.3, we observe that

P X=x,Y=y] Pyylx,y)
P {x| ]:P[X:le:y]: —_— = - —_ [4.97}
P Y P[Y =] Py ()
Hence, Py y(x,y) = Pxjy(x|y)Py(y). The proof of the second part is the same with X and ¥
reversed.

19



AT e B

4 1 Pxy(x,y) oT6
1 1

3 oI oT6 Random variables X and Y have the joint PMF
Yates p182 JR R A Py y(x, y), as given in Example 4.13 and repeated in

B ) the accompanying graph. Find the conditional PMF

1 1 1 1 .
1 1 o7 oF oTZ oT6 of Y given X = x foreach x € Sy.
0 . : ' — X

0o 1 2 3 4
To apply Theorem 4.22, we first find the marginal PMF Py (x). By Theorem 4.3,
Py(x) = Z},ESY Py y(x,y). For a given X = x, we sum the nonzero probablities
along the vertical line X = x. That s,

[ 1/4 x=1, 1/4 x=1,
1/8+4+1/8 x=2, 1/4 x =2,
Py(x)=4 1/124+1/124+1/12 x =3, =1 1/4 x=3,
1/16 +1/16 +1/16 +1/16 x =4, 1/4 x =4,

| 0 otherwise, 0 otherwise.

Theorem 4.22 implies that for x € {1, 2, 3, 4},

Pyvix.v
Pyix lx) = % @ (4.98)

Foreach x € {1, 2, 3, 4}, Py x(y|x) is a different PMF.
1 y=1,
0 otherwise.

1/3 ye{l,2,3},
P}’|X{yl3}=l oj gtherwise.

12 yell,2),

Pyix(y|l) = { Py x(y2) = { 0  otherwise.

174 ye{l1,2,3,4},
Py|x(y]4) ={ 0  otherwise.

Given X = x, the conditional PMF of Y is the discrete uniform (1, x) random variable.

20



Definition 4.13 Conditional PDF
For y such that fy(y) > 0, the conditional PDF of X given {Y = y}is

ey JxXY (X, )
Sxiy (x[y) = O
Definition 4.13 implies
_ Jxy (x,y)
Jrix lx) = TS (4.102)

Ref. book: Probability and Stochastic Processes: A Friendly
Introduction for Electrical and Computer Engineers 2nd Edition
by David J. Goodman (Author), Roy D. Yates (Author)

Theorem 4.8 If X and Y are random variables with joint PDF [y y(x, ),
Jx (x) = f Sfxy (x,y) dy, Jfr () = f Sfxy (x,y) dx.
—00 —00

Proof From the definition of the joint PDF, we can write

X o0
Fy(x)=P[X =x]= / (/ fyy @, y) d1) du. (4.34)
—oc \J—00

Taking the derivative of both sides with respect to x (which involves differentiating an integral with
variable limits), we obtain fy(x) = ff“;d fx y(x,y)dy. A similar argument holds for fy(y).

21


https://www.amazon.com/David-J-Goodman/e/B001H6NAX0/ref=dp_byline_cont_book_1
https://www.amazon.com/Roy-D-Yates/e/B00H4N6N0M/ref=dp_byline_cont_book_2

Example 4.19  Returning to Example 4.5, random variables X and Y have joint PDF

Y
Sulx,y)=2

2 0<ys=x<l,

0 otherwise. (4.103)

Yates p183 Frr (. y) = I

1
For0 < x < 1, find the conditional PDF fy|x(y|x). For0 < y < 1, find the conditional
PDF fx vy (x[y).

For0 < x < 1, Theorem 4.8 implies

_gpq?{]:r (F =)

L

[ 0] x
(x) =f F(x,y)d =f 2dy = 2x. (4.104) Y
Jx —00 fX'} Y 0 ' I'_‘ fw{x:y)=2
The conditional PDF of ¥ given X is \
Cfxy @) [ 1/)x 0<y<nx,
Jrix lx) = @ 10 otherwise. (4.105) X
1

Given X = x, we see that Y is the uniform (0, x) random variable. For0 < y < 1,
Theorem 4.8 implies

00 1
fr =f fx.y (x,p) dx =f 2dx =2(1 — y). (4.106)
o y
Furthermore, Equation (4.102) implies v
_Sxy ) [ 1/d-y) y<x<1.
fxy (x|y) = =~ 10 Stherwice. (4.107)

Conditioned on ¥ = y, we see that X is the uniform (y, 1) random variable.

X

Y
A Joxy)=2

\

-+ X
I

22



5.1. Conditional distributions and Mean (we saw Cond. Prob. Before)

Mixture Distribution:(page 239 Trivedi 15t ed.)

Conditoional density (pmf) can be extended to the case where Xis
discrete RV and Y is continuous RV (or vice versa)

Lecture: Reminder of probability
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5.2. Dependence and independence of RVs

Recall the definition of independent events E and F: P(EF)=P(E)P(F)
Definition: it is necessary and sufficient for two RVs X and Y to be independent:

Fyy(x,y) = Fx(x)Fy(y) for all x,y (89)
« Fyy(x,y) is the JPDF(=JCDF);
« Fx(x) and Fy(y) are PDFs (CDFs) of RV X and Y .

Definition: it is necessary and sufficient for two continuous RVs X and Y to be independent:

fxy(x,y) = fx(x)fy (y) for all x,y
(90)

* fxy (x,y) is the jpdf;
s fx(x) and fy(y) are pdfs of RV X and Y .

Definition: itis necessary and sufficient for two discrete RVs X and Y to be independent:
Pxy (0, y) =pxy(X =x,Y =V)py(X =V,Y = y) forall x,y °1)

- pxy (X, y) is the Jpmf;
* px(x)and py(y) are pmfs (discrete RV) or pdfs (continuous RV)) of RV X and Y .

Lecture: Reminder of probability
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Let: D1, D2 be the outcomes of two rolls:
S=D1+D2. the sum of two rolls

Each roll of a 6-sided die is an independent trial,

D1,D2 are independent.
Are S ands D1 independent? No

1. p(D1=1,5=7)? 2. p(D1=1,5=5)?
= p(D1=1)p(s=7) # p(D1=1)p(s=5)

Lecture: Reminder of probability
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Let: D1, D2 be the outcomes of two rolls:
S=D1+D2. the sum of two rolls

« Each roll of a 6-sided die is an independent trial,
 D1,D2 are independent.

Are S ands D1 independent?

1. p(D1=1,S=7)? 2. p(D1=1,5=5)?
Event (S=7) : {(1,6),(2,5),(3,4), Event (S=5) : {(1,4), (2,3),
(4,3),(5,2),(6,1)} (3,2),(4,1)}
0(D1=1)p(S=5)=(1/6)(4/36)
0(D1=1)p(S=7)=(1/6)(1/6) # 1/36=p(D1=1,S=5)

=1/36 =p(D1=1,5=7)
Independent events (D1=1),(S=7)
Dependent events (D1=1),(S=5)

All events (X=x,Y=y) must be independent for X,Y to be
Independent variables.
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5.3. Measure of dependence
Sometimes RVs are not independent:
« as a measure of dependence correlation moment (covariance) is used.

Definition: covariance of two RVs X and Y is defined as follows:
oxy = Kxy = cov(X,Y) = E[(X — E[XD)(Y — E[Y])] (92)
« where from definition , we find that Kyy = Kyy .

One can find the covariance using the following formulas:

* assume that RV X and Y are discrete:
Ky = EZ(x ~ EIXDO; — EIY DPrX =x,Y =y}
(93)
* assume that RV X and Y are continuous:

Kyy = j j (= EIXDOi = ELY Dfiy (o y)doxdy

Lecture: Reminder of probability
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It is often easy to use the following expression :
oxy = Kxy = E[XY] — E[X]E[Y] (95)

Problem with covariance: can be arbitrary in (—, ).

* problem: hard to compare dependence between different pair of RVs;
« solution: use correlation coefficient to measure the dependence between RVs.
Definition: correlation coefficient of RVs X and Y is defined as follows:

Kxy oxy

Pxy = 5[X]olY ]~ o[X]o[Y ] (96)

«if pxyy # 0then RVs X and Y are correlated and hence dependent;

* Example: assume we are given RVs X and Y such that Y = aX + b:
pXY =+1 a>0

Pxy = —1 a<0 57)

Lecture: Reminder of probability
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Very important note:

« pxv is the measure telling how close the dependence to linear.

Question: what conclusions can be made when pxy = 0? They are uncorrelated

*or RVs X and Y are not LINEARLY dependent;

«when Pyy = 0 is does not mean that they are independent.

independent RV dependent RV

uncorrelated RV | correlated R
Fig: Independent and uncorrelated RVs.

What pxy says to us:

‘Pxy # 0:two RVs are correlated and also dependent;

* Pxy = 0 :one can suggest that two RVs MAY BE independent;
*Pxy = +1 orPyy = —1:RVsXandY are linearly dependent.

Lecture: Reminder of probability

29



Perf Eval of Comp Systems

5.4. (Expectations of product and Expectations of Sum ) of correlated RVs

Mean:

* the mean of the product of two correlated RVs X,Y:
E[XY] = E[X]E[Y] + Kxy
« the mean of the product of two uncorrelated RVs X,Y:
E[XY] = E[X]E[Y]

Variance:

» the variance of the sum of two correlated RVs X,Y:

VIX + Y] = V[X] + V[Y] + 2K,y

 the variance of the sum of two uncorrelated RVs X,Y:

VIX + Y] = V[X] + V[Y]

Lecture: Reminder of probability

(98)

(99)

(100)

(101)

30



Now the Theory...

To capture this, define Covariance :

oyy =E{(X-X)Y-Y)}

oxy = [ [(x=X)y=7) py (x, »)dxdy

If the RVs are both Zero-mean ;| ,, = E{XY}

FX=Y: oy =0k =2

If X & Y are independent, then: | & yy =0




If oxy =E{(X-X)Y-Y)}=0

Say that X and Y are “uncorrelated”
If oxy =E{(X-X)(Y-Y)}=0

Then ﬁ{XY}z)??

Called “Correlation of X &Y”

So... RVs X'and Y are said to be uncorrelated

it EXY} = EAXGER TS




Independence vs. Uncorrelated

X &Y are ||] X&Y are
Independent Uncorrelated
Fxy (x,9) m E{XY}

= E{X}E{Y}

= fx () fy (¥)

PDFs Separate Means Separate
Uncorrelated

<IndependenD

INDEPENDENCE IS A STRONGER CONDITION !!!!



Confusing Terminology...

Covariance : | yy :E{(X—)?)(Y—?)}

Correlation - E{XY} ]Same if zero mean

O xy
O xOy

Correlation Coefficient: | O xyy =




For Random Vectors...

x=[X; X; - Xyl

Correlation Matrix :

R, =E{XXT} =

Covariance Matrix :

Cy =E{(x-T)(x-%)"}




Al jadde ) ) AB,C DR, L1, 401 sla JS& dals )

A.p(X,Y) =1
B.p(X,Y)=-1
C.p(X,Y) =0
D. Other




1BY=—2XX+b

Ox
Lgddagial ) Ol WS aw g uiS Aa g ad 4l ) i it 4y | Gl dle gyl i pa b hd

2A Y=ZX+p
Ox

LA gia ) O WS (a5 2S da g ab Ayl G e e 4 Canl Cula gl ) G e b ad
3-C.p(X,Y) =0 (Aissan i)
4-C. p(X,Y) =0 Y = X?

ASGH L 3hase L 4 U5 53,8 e o) 15 " (5 ot " Kiugsad 05 2815 4S ) shailas
Bl akalyaa LM ad et jehads juie 9 0l AL e jhea VX Gaily )l S



e Linear Correlation

- Correlation is said to be linear if the ratio of change is constant.
When the amount of outﬁut in a factory is doubled by doubling
the number of workers, this is an example of linear correlation.

* In other words, when all the points on the scatter diagram tend
to lie near a line which looks like a straight line, the correlation
is said to be linear. This is shown in the figure on the left below.

 Non Linear (Curvilinear) Correlation

« Correlation is said to be non linear if the ratio of change is not
constant. In other words, when all the points on the scatter
diagram tend to lie near a smooth curve, the correlation is said
to be non linear (curvilinear). This is shown in the figure on the
right below.

y-axis y-axis

0 N-anis 0 X-axis
Linear Correlation Non Linear Correlation



6. Pdf of Sum of independent RVs

We consider independent RVs X and Y with probability functions:

Px(x) = PriX = x}, Py(y) = Pr{Y = y} (102)

PMF of RV Z, Z=X+Y is defined as follows (i.e. for independent RVs X and

Y, convolution operation.)

PriZ =z} =) o_ oo PriX = k} Pr{Y = z — k} (103)
cif X =k,then, Ztakeonz (Z=z)ifandonlyif Y =z —k.

If RVs X and Y are continuous:

f2(@) =fx )Ofy 0 = [ fx(z — Mfy Ody = [ fr(z — x)fx (x)dx (104)
Exercise: CDF of sum of 2 independent RVs :F,(z) = F,(2)Of,(2)

= f:(2)OF,(2) g

Q: what is pdf of the sum of two RVs generally

Lecture: Reminder of probability 39
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An interesting case that often arises in signal detection problems, and for which we
have a closed-form solution, is when X and Y are independent normal variables with

zero mean and common variance (Problem 5.13). P 118 Kobayashi [] 43



5.13 Independent normal distribution and exponential distribution. Let X; and
X» be independent normal variables with zero mean and common variance o2. Show
that Z = X % + X % 1s exponentially distributed with mean 207

| —z/202
fz(2) = Pf? N u(z). (5.104)

44



Example 5.5: R =/ X2 + Y2, Let us set Z = R? in the previous example. In the
context of detecting a signal of the form S(1) = X cos(wt — ¢) + Y sin(wt — ¢), the

RV R = +/X? + Y2 represents the envelope of the signal, i.e., S(f) = R cos(wt — ),

=1 Y
where 6 — ¢ = tan™" .

The distribution function of R is given by

Fr(r) = f f e Ty ) dx | dy. (5.35)

Differentiation of the expression inside the square brackets leads, using Leibniz’s rule
again, to the following expression:

fxy( r2 — y2 )lL —
XY Y3 T —
Thus, we obtain

dFR(Z) . d r
2

1 2r
o2y — ) +0. 5.36
fxy(—y/r y fjr)( 5 rzyz) +0. ( )

JTr(r) = =

- = fxy((Vr2 —y2, y) + fxy(—r? —y2, y)] dy.
—r r= —y

(5.37)

Again, an important and useful case is found when X and Y are independent normal
variables with common variance (see Section 7.5.1). L]
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5.6* Leibniz’s rule.” In deriving (5.23), we used a special case of Leibniz’s rule for
differentiation under the integral sign.

THEOREM 5.1 (Leibniz’s rule). The following rule holds for differentiation of a definite
integral, when the integration limits are functions of the differential variable:

b(z) 9

d b(('.]
—f h(z,y)dy = h(z, b(2))b' (z) — h(z,a(z))a'(z) +[
dz a(z) a(z) 0z

(5.94)



In particular, if h is a function of y only, the rule reduces to

d b(z)
h(y)dy = h(b(2))b'(z) — h(a(z))a'(z). (5.95)

dz Ja(z)

(a) Define

fy h(x)dx & H(y).

— o0
Then prove (5.95).
(b) Define

) dH(z,
f h(z, x)dx 2 H(z, y) and 22 ) 2

oo 9

gz, y).

Then prove (5.94).

(c) Alternative proof of (5.94). Consider a function G(a, b, c¢), where a, b, and ¢ stand
for a(z), b(z), and c(z) respectively. By applying the chain rule to the function G,
we have

dG(a, b, G G G
('z,z ) —d(@) + =V () + 22 (5.96)

db dc
Consider a special case

b
c(z) =zand G(a, b,c) = f h(z,y)dy.

47
Then prove (5.94).
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Perf Eval of Comp Systems

7. The distribution of max and min of independent random variables

Let X1, ..., Xn be independent random variables

(distribution functions F(x) and tail distributions G/(x), i=1, ..., n)

Distribution of the maximum
P{max(X,, ..., X,) <x}

=P c
=P{X,<x}---P{X <x} (independence!) (105)
=F1(x])---an
Distribution of the minimum
Pimin(X,, ..., X)) >x}=P{X;>x,..., X, >x}
=P{X;>x}---P{X >x} (independence!) (106)

=Gy(x) - - Gpx)

Lecture: Reminder of probability



Appendix: General Case: Let X;, X,, . . .X, be continuous random variables

i Their joint Cumulative Distribution Function, F(x;, x,, . . .x,) defines

the probability that simultaneously X, is less than x,, X, is less than x,,
and so on; that is

F(OX X, X ) =POX < N X, <X, X, <X)

i. The cumulative distribution functions F,(x;), F,(x5), . . .,F.(x,) of the
individual random variables are called their marginal distribution

function. For any i, F,(x;) is the probability that the random variable X;
does not exceed the specific value x..

iii.  The random variables are independent if and only if

F(X11 X2""’Xk) — Fl(x1)|:2(x2)"' Fk (Xk)
or equivalently

f (X XX ) = £,06) F,00) -+ F, (%)
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