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4. Random variables (is nor random nor variable)

Basic notes:
events: sets of outcomes of the experiment;

in many experiments we are interested in some number associated
with the experiment:

random variable: function which associates a number with
experiment.

Examples:
number of voice calls N that exists at the switch at time t:
random variable which takes on integer values in (0,1, ..., o).
service time tg of voice call at the switch:

- random variable which takes on any real value (0, o).

Classification based on the nature of RV:
continuous: R € (—o0, 00)
discrete:N € {0,1,...},Z€ {...,—1,0,1, ... }.



4.1. Definitions (measure theoretic)
Definition: a real valued RV X is a mapping from () to *R such that:

fwe Q:X(w)<x}eF (45) for all x € R;

* This means that once we know the (random) value X(w) we know which of
the events in F have happened.

e F ={0, Q}: only constant functions are measurable
o F =22 3ll functions are measurable

Definition: an integer valued RV X is a mapping from () to X such that:

fwe Q: X(w)<x}eF (46)
e forallx € Z;
Note! in teletraffic and queuing theories:
* most RVs are time intervals, number of channels, packets etc.
* continuous: (0, ), discrete: 0,1,....



We are often more interested in a some number associated with the
experiment rather than the outcome itself.

Example 1. The number of heads in tossing coin rather than the
sequence of heads/tails

A real-valued random variable X is a mapping
X:§->R

which associates the real number X(e) to each outcome e € S§.

The image of a random variable X
Sxy={x€R| X(e) =x, e € S} (complete set of values X can take)

may be finite or countably infinite: discrete random variable : 0,1,....
uncountably infinite: continuous random variable : (0, )



4.1. Definitions Random Variable (classic)

 Example 2: The number of heads in three consecutive tossings
of a coin (head = h, tail=t (tail)) .
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e Note!

e The values of X are “drawn”
by “drawing” e

e e represents a “lottery ticket”,
on which the value of X'is written

* in teletraffic and queuing theories: most RVs are time intervals, number of

channels, packets etc.



4.2. Full descriptors(PDF, pdf, pmf)

Definition: the probability that a random variable X is not greater than
X:

Pr{X < x}= probability of the Event {X < x}
=function of x = Fy(x) with (oo < x < o)
is called probability (cumulative) distribution function (PDF, CDF) of X.

Definition: complementary (cumulative) probability distribution
function (CDF, CCDF)

e FC(x)=Pr{X >x}=1-F(x) =G(x) (48)



Cumulative Distribution Function

f(x)

0

Density
Function

-Example-
F(X
) Cumulative
Distribution
Function
T o /
0.75 d

X

2




4.3. Properties of PDF
For PDF the following properties holds:
* PDF F(x) is monotone and non-decreasing with:
F(—=0) =0, F(o) =1, 0<F(x) <1 (51)
foranya<b:

Prfa <X <b}=F(b)—F(a) (52)

right continuity: if F(x) is discontinuous at x = a, then:
F(a)=F(a—0)+Pr{X =a} (53)

If X is continuous: F(x) = f_xoof(y)dy

Definition: if X is a continuous RV, and F(x) is differentiable, then:

__dFx) _ . Pr{x<X=<x+dx}
f(x) T odx dlglcr—r>lo dx
is called probability density function (pdf).
« Xis discrete: F(x) = X< PriX =j} (54)

Note: if X is discrete RV it is often preferable to deal with pmf (probability
mass function) instead of PDF.
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(a) The probability distribution and
(b) The distribution function of a discrete RV.

Lecture: Reminder of probability
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4.4. Discrete RVs

* Definition: Let the values that can be assumed by Xbe x,, k=0, 1, 2, . ..
* The distribution function will have the staircase

* The steps occur at each x, and have size P(X = x,).

)E:"m)
P(X=%y)
P(X=%) E
L_j; — e > X
xp ?—, I'I. xl x*

Fig. A discrete distribution function has a finite number of discontinuities. The
random variable has a nonzero probability only at the points of discontinuity.
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4.4, Discrete RVs

CDF and pdf of discrete case
Fo(x) =PriX < x} = -
stx Pr{X = j} I AL R
= Z?Ll PriX = x;j} u(x — x;)

=X j=1 P(xu(x — x;) "
,Where p(xj) is a shorthand for t T | _ I

Pr{X = x;} X

Note: accumulates

Fig. Discrete distribution and
density functions

up to x;, and not to N
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4.4. Discrete RVs (pdf ) ! 1o T —————— 15(”“".“””0)
F

fx(x) = X(x) I |

P”I‘{X _ x]}du(x Xj)

Pr{X = xj}5(x — Xj)

f. (X)
Z 1p(x])6(x _x]) | ' pj
=p(x;) forj=1, .., N I [ T ‘ [ T
. Y | :X

Q: what is pmf of a discrete RV: J
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4.5. More Properties of pdf (continuous RV)

* pdf f(x) non-negative: t1,(x)

f(x) =20, x € (—o0, 0) (55)

e if f(x) is integrable then for any x4 < x,: _/\/\/{\ -

Prix; <X < x3} = F(xz) — F(x) X1 Xy ]
X

= Xlzf(X)dx %)

* Fx(xo)= f_xc(:o fx (x)dx -

* integration to 1: f_oooof(x)dx =1 (57)
Note: all these properties hold for pmf (you have to replace integral by sum).
Q: what does f(x) mean?

Note: Not All Continuous Random Variables Have PDFs , e.g. Cantor set
« https://blogs.ubc.ca/math105/continuous-random-variables/the-pdf/
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4.6. mixed RVs

Definition: X is a continuous RV, and F(x) is differentiable, and with
discontinuities at some discrete points:

The first term r.h.s are impulse components and the second is non-
impulse component

f () = ) pi8— ) + Cx(®)
j=1

J_o:ofx(x)dx

= ijU(x — Xj) +f Clx)dx =1 S ﬁ,fx)
j=1 %

g, Suergaa0c )| gy )

x:) x’, X‘z_
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4.7. notes on Full descriptors cntd.
In what follows we assume integer values for discrete RVs i.e. :
p; = Pr{X = j} (50)
Which is also called probability function (PF) or probability mass function
(pmf).

* Q: Xis acontinuous RV with no jump, then P(x=x,)=0 or
* If we areignorant: p(x = xy) = fx(xy)|Ax| since

P{x, < X (&) < X, + AX}= J.XXOMX f. (u)du =~ f, (X,)-AX

0

* jumps in the CDF correspond to points x for which P(X=x)>0
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4.8. Parameters of RV

Basic notes:

Full descriptors (i.e.)

e continuous RV: PDF and pdf give all information regarding properties of RV;

e discrete RV: PDF and pdf(pmf) give all information regarding properties of
RV.

Why we need something else:

e problem 1: PDF, pdf and pmf are sometimes not easy to deal with;
 problem 2: sometimes it is hard to estimate from data;

e solution: use parameters (summaries) of RV.

What parameters (summaries):

* mean, median;

* variance;

* skewness;

* excess (also known as excess kurtosis or simply kurtosis).



4.9-a: Mean
Definition: the mean of RV X is given by:

E|X] =Yy xip;i, Elx] = fjooo xf(x)dx (58)

* mean E[X] of RV X is between max and min value of non-complex RV:

minx, < E[x] < max x,,

k k (59)

e mean of the constant is constant:
Elc] =c (60)

* mean of RV multiplied by constant value is constant value multiplied by the
mean:

E[cX] = cE[X] (61)

* mean of constant and RV X is the mean of X and constant value:
Elc + X] = c + E[X] (62)
* Linearity of Expectation:

E[X; + -+ X,] = E[X,] + -+ E[X,,]



4.9-a. Conditional Expectation

The expectation of the random variable X given that another random variable Y takes
the valueY=yis

EIX|Y =yl =[O xfxy(x, y)dx
obtained by using the conditional distribution of X.
E[X|Y = y]is a function of y.

By applying this function on the value of the random variable Y one obtains a random
variable E [X [Y] (a function of the random variable Y ).

Properties of conditional expectation

E[X /Y] =E[X] if Xand Y are independent
ElcX[Y]=cE[X]Y] c is constant
E[X+Y[Z]=E[X[Z]+E][Y[Z]

Elg(Y)/Y]=g(Y)

Elg(Y)X[Y]=g(Y)E[X]Y]




« Definition: The median of X is defined to be any value m such
that

Pr(X<m)=>1/2 and Pr(X>m) 2 1/2.

* Theorem 3.9-mitzen: For any random variable X with finite
expectation E[X] and finite median m,

1. the expectation E[X] is the value of c that minimizes the
expression

E[(X-c)?], and
2. the median m is a value of c that minimizes the expression
[1X=cll.

 Theorem 3.10-mitzen: If X is a random variable with finite
standard deviation o, expectation u, and median m, then

lu-mj <o.



For a random vanable X, consider the function

g(c) = E[(X = ¢)F] (3.57)

Remember, the quantity E[(X = ¢)?] is a number, so g(c) really is a function, mapping a real number c to
some real output.

We can ask the question, What value of ¢ minimizes g(c)? To answer that question, write:

g(c) = E[(X —¢)*] = E(X* = 2¢X + %) = E(X?) - 2cEX + ¢ (3.58)

where we have used the various properties of expected value derived in recent sections.

Now differentiate with respect to ¢, and set the result to 0. Remembering that £(X?) and EX are constants,
we have

0=—2EX +2¢ (3.59)

so the minimizing ¢ is ¢ = EX!

In other words, the minimum value of E[(X — ¢)?] occurs at ¢ = EX.
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4.10. Variance and standard deviation

Definition: the mean of the square of difference between RV X and its mean E[X]:

VIX] = E[(X — E[X])?] (63)
How to compute variance:
 assume that X is discrete, compute variance as:

V[X] = ZVn(X - E[X])zpn (64)

e assume that X is continuous, compute variance as:

= [ (x — E[X])?f(x)dx (65)

* the another approach to compute variance:

VIX] = E[X*] — (E[X])*(66)

23



4.10 cntd. Properties of the variance:

 the variance of the constant value is O:
V[c] = E[(X — E[X])*] = E[(c — c)*] = E[0] = 0 (67)
e variance of RV multiplied by constant value:

V[cX] = E[(cX — cE[X])?] = E[c*(X — E[X])?] = c?V[X] (68)
e variance of the constant value and RV X:

Vc+X] =E[((c+X)—E(c+E[X]D))?]=E[(c+ X — (c+
E[XD)?] = E[(X —EXD*l =V[X]  (69)

Definition: the standard deviation of RV X is given by:
olX] = V[X] (70)
Note: standard deviation is dimensionless parameter.
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4.10 cntd. Properties of variance (summary):

lv when the X,
c VXt Xl = VX + o+ VK] oo =

are independent

e VX, +:-+X,]= ’{szl Cov[Xl-,Xj] always

Proof:
* VIX;+ -+ X = E{Q]-1(X; — E(X;))?} =
E{X}_1(X; — E(X;)) TR (Xi — E(X))} =

i=1Xk=1E {(Xj — E(Xj)) (X — E(Xk))} =
k=1 COU[Xj»Xk] = Yi=1VXy) + X5=1 Xi=1 Cov(Xj, Xi)

Properties of covariance

 Cov|X,Y]| = Covl|Y, X]

e CovlX+Y,Z] =Cov|X,Z] + Covl|Y, Z]

Lecture: Reminder of probability 25
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4.10 cntd. Conditional variance

Conditional variance
VIX|Y] = E[(X — E[X|Y]?|Y] Deviation with respect to the conditional

expectation

Conditional covariance
COV[X,Y|Z] = E[(X — E[X|Z])(X — E[Y|Z])|Z]

Conditioning rules

E[X]=E[E[X /Y]] (inner conditional expectation is a function of Y)
VIX]=E[VIX[Y]]+VIE[X Y]] Law of Total Variance
COV[X,Y] = E[COV[X,Y|Z] + COV[E[X|Z],E[Y]|Z]

Lecture: Reminder of probability
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4.11. Other parameters: moments
Let us assume the following:
« Xbe RV (discrete or continuous);
e k€12 .. bethenatural number;
« Y =X*Kk=1,2,..,bethe set of random variables.
Definition: the mean of RVs Y can be computed as follows:
 assume X is a discrete RV:
ElY] =Xvixipi  (71)

e assume X is a continuous one.

0.0)

E[Y]=[__ x*fx(x)dx  (72)
Note: for example, mean is obtained by setting k = 1.
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Definition: (raw) moment of order k of RV X is the mean of RV X in power of k:
o= E[X*]  (73)
Definition: central moment (moment around the mean) of order k of RV X is
given by:
we = E[((X —E[XD*]  (74)
One can note that:
E[X] =<y, V[X] = 0[X] = pp = oz — o (75)



measures of shape:
Definition: skewness (the degree of symmetry
in the variable distribution)of RV is given by:

_ U3
SX = G 7O

N\ VAN AN

Negatively skewed distribution Normal distribution Positively skewed (.1istribution
or Skewed to the left Symmetrical or Skewed to the right
Skewness <0 Skewness =0 Skewness >0

for unimodal (one peak), skewed to one side

(i.e. not symmetric ), If the bulk of the data is Beta(a=4.5,

at the left and the right tail is longer, we say that B=2)

the distribution is skewed right or positively skewed; 5';“-‘;"3”7‘?55 =
+0U.

and vice versa.

Q =0 M =N ON DO —-0M

Application: three bandit (robbing your money) with =========="""""
the above distributions; the left distribution is the best
Machine in terms of maximizing your net profit



Skewness gives us the Shape of the data. It is the ‘Lack of Symmetry’

J,

Positively Skewed Negatively Skewed

» Right Tail is longer » Both tails are equal + Left Tail is longer
+ Mass of the distribution * Mass of the » Mass of the distribution
is concentrated on the distribution is equally is concentrated on the
left distributed right
Mode<Median<Mean Mean=Median=Mode Mean<Median<Mode
Normal Distribution is symmetric
Madian distribution Mh:i?:'“ Median
Mode — | — Ml@an hgds ke an — hdode
N A
\\
1 I
Positive Svymmetrical Ne g ative

Skew Distribution Skew
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Uniform(min=-v3, max=v3)
kurtosis = 1.8, excess = -1.2

measures of shape:

Definition: kurtosis (excess of kurtosis )

of RV is given by:

. Ha
eX - (O-[X])4- (77) T M N = O = Moo e

the degree of tailedness in the variable distribution (Westfall 2014).

increasing kurtosis is associated with the “movement of probability mass from
the shoulders of a distribution into its center and tails.”

VAYAN N\

Platykurtic Normal Leptokurtic
distribution distribution distribution
] i i Fatter tails
Thinner tails Mesokurtic Kurtosis > 0
Kurtosis <0 distribution

Kurtosis = 0



Kurtosis is defined as a measure of ‘peakedness’. It is generally measured relative to
Normal distribution. (Which means ‘excess of kurtosis’ is measured)

Normal distribution is A leptokurtic distribution A platykurtic distribution
termed as mesokurtic has a more acute peak. has a flatter peak.
distribution (positive kurtosis) (negative kurtosis)
(+) Leptokurtic General
Forms of
(0) Mesokurtic Kurtosis
(Normal)

(-) Platykurtic

a distribution with kurtosis approximately equal to 3 or excess of kurtosis=0 is called
mesokurtic. A value of kurtosis less than 3 indicates a platykurtic distribution and a value
greater than 3 indicates a leptokurtic distribution.

A normal distribution is a mesokurtic distribution.
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4.12. Meaning of moments

Parameters meanings:
* measures of central tendency:

- mean: E[X] =Yy x;pi

- mode: value corresponding to the highest probability;

- median: value that equally separates weights of the distribution.
* measures of variability:

- variance: VIX] = E[(X — E[X])z]
- standard deviation: V[X]
- squared coefficient of variation(squared COV): k)z( = I;/[Ef]]z

e other measures:
- skewness of distribution: skewness;
- excess of the mode: excess.
Note: not all parameters exist for a given distribution!
Pareto distribution has no mean whena <1
Pareto distribution has no variance when ae(1,2]
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E(X) = fummfx(m)dz

=fum/:fx(:c)dtdz
=fumftmfx(z)dxdt

=mer(X > t)dt
0

_ f T (1= Fy(t) at
0

The proof is quite similar to the discrete case. Interchanging the bounds of integration in line 3 is
justified by Fubini’s Theorem from multivariable calculus. O
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Theorem 2.2.5 Let X be a non-negative continuous random variable with

its distribution function F(x). Suppose that xlgfgo z{l — F(z)} = 0., Then, we
have:

E(X) = T2,{1 - F(z)}.

=0
Proof We have assumed that X > 0 w.p.1 and thus
EX) =/[; zf(z)dx
= [ zdF(z), " dF(z)/dz = f(z) from (1.6.10)
= = [P 2d{1 - F(2)} =
~{[e{1 - F@}=5" - Jo {1 - F(@)}da},
using integration by parts from (1.6.28)
o0 . .
= [, {1 — F(z)}dz since Jim z{l — F(z)}
is assumed to be zero.

The proof is now complete. H
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